These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29271521)

  • 1. Rational Design of Statically and Dynamically Stable Lithium-Sulfur Batteries with High Sulfur Loading and Low Electrolyte/Sulfur Ratio.
    Chung SH; Manthiram A
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29271521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Carbon-Cotton Cathode with Ultrahigh-Loading Capability for Statically and Dynamically Stable Lithium-Sulfur Batteries.
    Chung SH; Chang CH; Manthiram A
    ACS Nano; 2016 Nov; 10(11):10462-10470. PubMed ID: 27783490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing Lithium-Sulfur Batteries with High-Loading Cathodes at a Lean Electrolyte Condition.
    Chung SH; Manthiram A
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43749-43759. PubMed ID: 30479126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Facile, Low-Cost Hot-Pressing Process for Fabricating Lithium-Sulfur Cells with Stable Dynamic and Static Electrochemistry.
    Chung SH; Lai KY; Manthiram A
    Adv Mater; 2018 Nov; 30(46):e1805571. PubMed ID: 30368962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rational Design of a High-Loading Polysulfide Cathode and a Thin-Lithium Anode for Developing Lean-Electrolyte Lithium-Sulfur Full Cells.
    Yu GT; Chung SH
    Small; 2023 Oct; 19(43):e2303490. PubMed ID: 37357173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-supporting sulfur cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density lithium-sulfur batteries.
    Pei F; Lin L; Ou D; Zheng Z; Mo S; Fang X; Zheng N
    Nat Commun; 2017 Sep; 8(1):482. PubMed ID: 28883525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Current Collectors with Carbon Nanofoams for Electrochemically Stable Lithium-Sulfur Cells.
    Chen SY; Chung SH
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemically Stable Rechargeable Lithium-Sulfur Batteries Equipped with an Electrospun Polyacrylonitrile Nanofiber Film.
    Chiu LL; Chung SH
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrolessly tin-plated sulfur nanocomposite for practical lean-electrolyte lithium-sulfur cells with a high-loading sulfur cathode.
    Kung CY; Chung SH
    Mater Horiz; 2023 Oct; 10(11):4857-4867. PubMed ID: 37721718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoporosity of Carbon-Sulfur Nanocomposites toward the Lithium-Sulfur Battery Electrochemistry.
    Yu CH; Yen YJ; Chung SH
    Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34201189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and Surfacial Modification of Carbon Nanofoam as an Interlayer for Electrochemically Stable Lithium-Sulfur Cells.
    Quay YJ; Chung SH
    Nanomaterials (Basel); 2021 Dec; 11(12):. PubMed ID: 34947691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Safe Electrolyte Enabled via Controllable Polysulfide Release and Efficient Conversion for Advanced Lithium-Sulfur Batteries.
    Tang B; Wu H; Du X; Cheng X; Liu X; Yu Z; Yang J; Zhang M; Zhang J; Cui G
    Small; 2020 Feb; 16(5):e1905737. PubMed ID: 31916670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Module-Designed Carbon-Coated Separators for High-Loading, High-Sulfur-Utilization Cathodes in Lithium-Sulfur Batteries.
    Huang YC; Yen YJ; Tseng YH; Chung SH
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Generated Li
    Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y
    Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective Reduction of Multivariate Metal-Organic Frameworks for Advanced Electrocatalytic Cathodes in High Areal Capacity and Long-Life Lithium-Sulfur Batteries.
    Kaid MM; Shehab MK; Fang H; Ahmed AI; El-Hakam SA; Ibrahim AA; Jena P; El-Kaderi HM
    ACS Appl Mater Interfaces; 2024 Jan; 16(2):2283-2295. PubMed ID: 38166008
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries.
    Chen S; Yu Z; Gordin ML; Yi R; Song J; Wang D
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):6959-6966. PubMed ID: 28157286
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-Life Lithium-Sulfur Batteries with a Bifunctional Cathode Substrate Configured with Boron Carbide Nanowires.
    Luo L; Chung SH; Yaghoobnejad Asl H; Manthiram A
    Adv Mater; 2018 Sep; 30(39):e1804149. PubMed ID: 30101423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium-sulfur transformation.
    Li X; Banis M; Lushington A; Yang X; Sun Q; Zhao Y; Liu C; Li Q; Wang B; Xiao W; Wang C; Li M; Liang J; Li R; Hu Y; Goncharova L; Zhang H; Sham TK; Sun X
    Nat Commun; 2018 Oct; 9(1):4509. PubMed ID: 30375387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries.
    Luo R; Yu Q; Lu Y; Zhang M; Peng T; Yan H; Liu X; Kim JK; Luo Y
    Nanoscale Horiz; 2019 Mar; 4(2):531-539. PubMed ID: 32254105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergetic Effects of Multifunctional Composites with More Efficient Polysulfide Immobilization and Ultrahigh Sulfur Content in Lithium-Sulfur Batteries.
    Chen M; Jiang S; Huang C; Xia J; Wang X; Xiang K; Zeng P; Zhang Y; Jamil S
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13562-13572. PubMed ID: 29616796
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.