BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 29271761)

  • 1. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.
    Spiga D
    J Synchrotron Radiat; 2018 Jan; 25(Pt 1):123-130. PubMed ID: 29271761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating flat-top X-ray beams by applying surface profiles of alternating curvature to deformable piezo bimorph mirrors.
    Sutter JP; Alcock SG; Kashyap Y; Nistea I; Wang H; Sawhney K
    J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1333-1347. PubMed ID: 27787239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines.
    Alcock SG; Nistea I; Sutter JP; Sawhney K; Fermé JJ; Thellièr C; Peverini L
    J Synchrotron Radiat; 2015 Jan; 22(1):10-5. PubMed ID: 25537582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.
    Kashyap Y; Wang H; Sawhney K
    Rev Sci Instrum; 2016 May; 87(5):052001. PubMed ID: 27250381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams.
    Alcock SG; Nistea IT; Signorato R; Owen RL; Axford D; Sutter JP; Foster A; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):45-51. PubMed ID: 30655467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manufacturing an active X-ray mirror prototype in thin glass.
    Spiga D; Barbera M; Collura A; Basso S; Candia R; Civitani M; Di Bella MS; Di Cicca G; Lo Cicero U; Lullo G; Pelliciari C; Riva M; Salmaso B; Sciortino L; Varisco S
    J Synchrotron Radiat; 2016 Jan; 23(1):59-66. PubMed ID: 26698046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially coherent X-ray wavefront propagation simulations including grazing-incidence focusing optics.
    Canestrari N; Chubar O; Reininger R
    J Synchrotron Radiat; 2014 Sep; 21(Pt 5):1110-21. PubMed ID: 25178000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface profiling of X-ray mirrors for shaping focused beams.
    Laundy D; Alianelli L; Sutter J; Evans G; Sawhney K
    Opt Express; 2015 Jan; 23(2):1576-84. PubMed ID: 25835915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DABAM: an open-source database of X-ray mirrors metrology.
    Sanchez Del Rio M; Bianchi D; Cocco D; Glass M; Idir M; Metz J; Raimondi L; Rebuffi L; Reininger R; Shi X; Siewert F; Spielmann-Jaeggi S; Takacs P; Tomasset M; Tonnessen T; Vivo A; Yashchuk V
    J Synchrotron Radiat; 2016 May; 23(Pt 3):665-78. PubMed ID: 27140145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed adaptive optics using bimorph deformable x-ray mirrors.
    Alcock SG; Nistea IT; Badami VG; Signorato R; Sawhney K
    Rev Sci Instrum; 2019 Feb; 90(2):021712. PubMed ID: 30831713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long, elliptically bent, active X-ray mirrors with slope errors <200 nrad.
    Nistea IT; Alcock SG; Kristiansen P; Young A
    J Synchrotron Radiat; 2017 May; 24(Pt 3):615-621. PubMed ID: 28452753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors.
    Alcock SG; Nistea IT; Signorato R; Sawhney K
    J Synchrotron Radiat; 2019 Jan; 26(Pt 1):36-44. PubMed ID: 30655466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional in situ metrology of X-ray mirrors using the speckle scanning technique.
    Wang H; Kashyap Y; Laundy D; Sawhney K
    J Synchrotron Radiat; 2015 Jul; 22(4):925-9. PubMed ID: 26134795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using refractive optics to broaden the focus of an X-ray mirror.
    Laundy D; Sawhney K; Dhamgaye V
    J Synchrotron Radiat; 2017 Jul; 24(Pt 4):744-749. PubMed ID: 28664880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a multi-lane X-ray mirror providing variable beam sizes.
    Laundy D; Sawhney K; Nistea I; Alcock SG; Pape I; Sutter J; Alianelli L; Evans G
    Rev Sci Instrum; 2016 May; 87(5):051802. PubMed ID: 27250369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hard X-ray nanofocusing using adaptive focusing optics based on piezoelectric deformable mirrors.
    Goto T; Nakamori H; Kimura T; Sano Y; Kohmura Y; Tamasaku K; Yabashi M; Ishikawa T; Yamauchi K; Matsuyama S
    Rev Sci Instrum; 2015 Apr; 86(4):043102. PubMed ID: 25933836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimized alignment of X-ray mirrors with an automated speckle-based metrology tool.
    Zhou T; Wang H; Fox OJL; Sawhney KJS
    Rev Sci Instrum; 2019 Feb; 90(2):021706. PubMed ID: 30831677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controlling X-ray deformable mirrors during inspection.
    Huang L; Xue J; Idir M
    J Synchrotron Radiat; 2016 Nov; 23(Pt 6):1348-1356. PubMed ID: 27787240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation of heat load deformations using adaptive optics for the ALS upgrade: a wave optics study.
    Sanchez Del Rio M; Wojdyla A; Goldberg KA; Cutler GD; Cocco D; Padmore HA
    J Synchrotron Radiat; 2020 Sep; 27(Pt 5):1141-1152. PubMed ID: 32876588
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optics metrology and at-wavelength wavefront characterization by a microfocus X-ray grating interferometer.
    Zhao S; Yang Y; Shen Y; Cheng G; Wang Y; Wang Q; Zhang L; Wang K
    Opt Express; 2021 Jul; 29(14):22704-22713. PubMed ID: 34266028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.