These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 29271765)
1. In situ electrochemical synchrotron radiation for Li-ion batteries. Alemu T; Wang FM J Synchrotron Radiat; 2018 Jan; 25(Pt 1):151-165. PubMed ID: 29271765 [TBL] [Abstract][Full Text] [Related]
2. Unravelling Li He J; Tao T; Yang F; Sun Z ChemSusChem; 2022 Aug; 15(15):e202200817. PubMed ID: 35642616 [TBL] [Abstract][Full Text] [Related]
3. (De)lithiation mechanism of Li/SeS(x) (x = 0-7) batteries determined by in situ synchrotron X-ray diffraction and X-ray absorption spectroscopy. Cui Y; Abouimrane A; Lu J; Bolin T; Ren Y; Weng W; Sun C; Maroni VA; Heald SM; Amine K J Am Chem Soc; 2013 May; 135(21):8047-56. PubMed ID: 23631402 [TBL] [Abstract][Full Text] [Related]
4. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
5. X-ray absorption spectroscopy study of the LixFePO4 cathode during cycling using a novel electrochemical in situ reaction cell. Deb A; Bergmann U; Cairns EJ; Cramer SP J Synchrotron Radiat; 2004 Nov; 11(Pt 6):497-504. PubMed ID: 15496738 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional Reconstruction and Analysis of All-Solid Li-Ion Battery Electrode Using Synchrotron Transmission X-ray Microscopy Tomography. Li T; Kang H; Zhou X; Lim C; Yan B; De Andrade V; De Carlo F; Zhu L ACS Appl Mater Interfaces; 2018 May; 10(20):16927-16931. PubMed ID: 29733566 [TBL] [Abstract][Full Text] [Related]
7. Hard X-ray-induced damage on carbon-binder matrix for in situ synchrotron transmission X-ray microscopy tomography of Li-ion batteries. Lim C; Kang H; De Andrade V; De Carlo F; Zhu L J Synchrotron Radiat; 2017 May; 24(Pt 3):695-698. PubMed ID: 28452763 [TBL] [Abstract][Full Text] [Related]
8. Synchrotron radiation based X-ray techniques for analysis of cathodes in Li rechargeable batteries. Singh JP; Paidi AK; Chae KH; Lee S; Ahn D RSC Adv; 2022 Jul; 12(31):20360-20378. PubMed ID: 35919598 [TBL] [Abstract][Full Text] [Related]
9. Quantitative Operando Visualization of Electrochemical Reactions and Li Ions in All-Solid-State Batteries by STEM-EELS with Hyperspectral Image Analyses. Nomura Y; Yamamoto K; Hirayama T; Ohkawa M; Igaki E; Hojo N; Saitoh K Nano Lett; 2018 Sep; 18(9):5892-5898. PubMed ID: 30130410 [TBL] [Abstract][Full Text] [Related]
10. Characterization of electrode materials for lithium ion and sodium ion batteries using synchrotron radiation techniques. Doeff MM; Chen G; Cabana J; Richardson TJ; Mehta A; Shirpour M; Duncan H; Kim C; Kam KC; Conry T J Vis Exp; 2013 Nov; (81):e50594. PubMed ID: 24300777 [TBL] [Abstract][Full Text] [Related]
11. Direct visualization of solid electrolyte interphase formation in lithium-ion batteries with in situ electrochemical transmission electron microscopy. Unocic RR; Sun XG; Sacci RL; Adamczyk LA; Alsem DH; Dai S; Dudney NJ; More KL Microsc Microanal; 2014 Aug; 20(4):1029-37. PubMed ID: 24994021 [TBL] [Abstract][Full Text] [Related]
12. In Situ Electrochemistry of Rechargeable Battery Materials: Status Report and Perspectives. Yang Y; Liu X; Dai Z; Yuan F; Bando Y; Golberg D; Wang X Adv Mater; 2017 Aug; 29(31):. PubMed ID: 28627135 [TBL] [Abstract][Full Text] [Related]
13. Synchrotron X-ray Analytical Techniques for Studying Materials Electrochemistry in Rechargeable Batteries. Lin F; Liu Y; Yu X; Cheng L; Singer A; Shpyrko OG; Xin HL; Tamura N; Tian C; Weng TC; Yang XQ; Meng YS; Nordlund D; Yang W; Doeff MM Chem Rev; 2017 Nov; 117(21):13123-13186. PubMed ID: 28960962 [TBL] [Abstract][Full Text] [Related]
14. In-Depth Study of Li Uhlemann M; Madian M; Leones R; Oswald S; Maletti S; Eychmüller A; Mikhailova D ACS Appl Mater Interfaces; 2020 Aug; 12(33):37227-37238. PubMed ID: 32687305 [TBL] [Abstract][Full Text] [Related]
15. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy. Shimoyamada A; Yamamoto K; Yoshida R; Kato T; Iriyama Y; Hirayama T Microscopy (Oxf); 2015 Dec; 64(6):401-8. PubMed ID: 26337787 [TBL] [Abstract][Full Text] [Related]
16. Spinel materials for Li-ion batteries: new insights obtained by operando neutron and synchrotron X-ray diffraction. Bianchini M; Fauth F; Suard E; Leriche JB; Masquelier C; Croguennec L Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):688-701. PubMed ID: 26634725 [TBL] [Abstract][Full Text] [Related]
17. In Situ/Operando X-ray Spectroscopies for Advanced Investigation of Energy Materials. Dong CL; Vayssieres L Chemistry; 2018 Dec; 24(69):18356-18373. PubMed ID: 30300939 [TBL] [Abstract][Full Text] [Related]
18. Probing the Complexities of Structural Changes in Layered Oxide Cathode Materials for Li-Ion Batteries during Fast Charge-Discharge Cycling and Heating. Hu E; Wang X; Yu X; Yang XQ Acc Chem Res; 2018 Feb; 51(2):290-298. PubMed ID: 29350034 [TBL] [Abstract][Full Text] [Related]
19. Miniature all-solid-state heterostructure nanowire Li-ion batteries as a tool for engineering and structural diagnostics of nanoscale electrochemical processes. Oleshko VP; Lam T; Ruzmetov D; Haney P; Lezec HJ; Davydov AV; Krylyuk S; Cumings J; Talin AA Nanoscale; 2014 Oct; 6(20):11756-68. PubMed ID: 25157420 [TBL] [Abstract][Full Text] [Related]
20. The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte-cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation. Cherkashinin G; Nikolowski K; Ehrenberg H; Jacke S; Dimesso L; Jaegermann W Phys Chem Chem Phys; 2012 Sep; 14(35):12321-31. PubMed ID: 22858824 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]