These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
361 related articles for article (PubMed ID: 29271765)
21. Self-Assembled Framework Formed During Lithiation of SnS Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057 [TBL] [Abstract][Full Text] [Related]
22. Structure formation and surface chemistry of ionic liquids on model electrode surfaces-Model studies for the electrode Buchner F; Uhl B; Forster-Tonigold K; Bansmann J; Groß A; Behm RJ J Chem Phys; 2018 May; 148(19):193821. PubMed ID: 30307189 [TBL] [Abstract][Full Text] [Related]
23. Quasi in situ XPS investigations on intercalation mechanisms in Li-ion battery materials. Oswald S; Nikolowski K; Ehrenberg H Anal Bioanal Chem; 2009 Apr; 393(8):1871-7. PubMed ID: 19066866 [TBL] [Abstract][Full Text] [Related]
24. An electrochemical cell with sapphire windows for operando synchrotron X-ray powder diffraction and spectroscopy studies of high-power and high-voltage electrodes for metal-ion batteries. Drozhzhin OA; Tereshchenko IV; Emerich H; Antipov EV; Abakumov AM; Chernyshov D J Synchrotron Radiat; 2018 Mar; 25(Pt 2):468-472. PubMed ID: 29488926 [TBL] [Abstract][Full Text] [Related]
25. Development of a versatile electrochemical cell for in situ grazing-incidence X-ray diffraction during non-aqueous electrochemical nitrogen reduction. Blair SJ; Nielander AC; Stone KH; Kreider ME; Niemann VA; Benedek P; McShane EJ; Gallo A; Jaramillo TF J Synchrotron Radiat; 2023 Sep; 30(Pt 5):917-922. PubMed ID: 37594864 [TBL] [Abstract][Full Text] [Related]
26. Microwave-assisted synthesis and electrochemical evaluation of VO2 (B) nanostructures. Ashton TE; Hevia Borrás D; Iadecola A; Wiaderek KM; Chupas PJ; Chapman KW; Corr SA Acta Crystallogr B Struct Sci Cryst Eng Mater; 2015 Dec; 71(Pt 6):722-6. PubMed ID: 26634729 [TBL] [Abstract][Full Text] [Related]
27. Solid-State NMR and MRI Spectroscopy for Li/Na Batteries: Materials, Interface, and In Situ Characterization. Liu X; Liang Z; Xiang Y; Lin M; Li Q; Liu Z; Zhong G; Fu R; Yang Y Adv Mater; 2021 Dec; 33(50):e2005878. PubMed ID: 33788341 [TBL] [Abstract][Full Text] [Related]
28. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
29. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography. Yamamoto K; Iriyama Y; Hirayama T Microscopy (Oxf); 2017 Feb; 66(1):50-61. PubMed ID: 27733434 [TBL] [Abstract][Full Text] [Related]
30. In situ and Operando Tracking of Microstructure and Volume Evolution of Silicon Electrodes by using Synchrotron X-ray Imaging. Dong K; Markötter H; Sun F; Hilger A; Kardjilov N; Banhart J; Manke I ChemSusChem; 2019 Jan; 12(1):261-269. PubMed ID: 30296015 [TBL] [Abstract][Full Text] [Related]
31. Observation of electrochemically active Fe Dräger C; Sigel F; Witte R; Kruk R; Pfaffmann L; Mangold S; Mereacre V; Knapp M; Ehrenberg H; Indris S Phys Chem Chem Phys; 2018 Dec; 21(1):89-95. PubMed ID: 30519683 [TBL] [Abstract][Full Text] [Related]
32. Synchrotron X-ray Spectroscopic Investigations of In-Situ-Formed Alloy Anodes for Magnesium Batteries. Xu X; Ye C; Chao D; Chen B; Li H; Tang C; Zhong X; Qiao SZ Adv Mater; 2022 Feb; 34(8):e2108688. PubMed ID: 34914149 [TBL] [Abstract][Full Text] [Related]
33. Solid Electrolyte Interphase (SEI) at TiO Ventosa E; Madej E; Zampardi G; Mei B; Weide P; Antoni H; La Mantia F; Muhler M; Schuhmann W ACS Appl Mater Interfaces; 2017 Jan; 9(3):3123-3130. PubMed ID: 28036171 [TBL] [Abstract][Full Text] [Related]
34. Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy. Kim Y; Kim DS; Um JH; Yoon J; Kim JM; Kim H; Yoon WS ACS Appl Mater Interfaces; 2018 Sep; 10(35):29992-29999. PubMed ID: 30088911 [TBL] [Abstract][Full Text] [Related]
35. Internal potential mapping of charged solid-state-lithium ion batteries using in situ Kelvin probe force microscopy. Masuda H; Ishida N; Ogata Y; Ito D; Fujita D Nanoscale; 2017 Jan; 9(2):893-898. PubMed ID: 28000823 [TBL] [Abstract][Full Text] [Related]
36. Probing Electrochemical Potential Differences over the Solid/Liquid Interface in Li-Ion Battery Model Systems. Källquist I; Lindgren F; Lee MT; Shavorskiy A; Edström K; Rensmo H; Nyholm L; Maibach J; Hahlin M ACS Appl Mater Interfaces; 2021 Jul; 13(28):32989-32996. PubMed ID: 34251812 [TBL] [Abstract][Full Text] [Related]
37. Understanding Li diffusion in Li-intercalation compounds. Van der Ven A; Bhattacharya J; Belak AA Acc Chem Res; 2013 May; 46(5):1216-25. PubMed ID: 22584006 [TBL] [Abstract][Full Text] [Related]
38. Review of Recent Development of In Situ/Operando Characterization Techniques for Lithium Battery Research. Liu D; Shadike Z; Lin R; Qian K; Li H; Li K; Wang S; Yu Q; Liu M; Ganapathy S; Qin X; Yang QH; Wagemaker M; Kang F; Yang XQ; Li B Adv Mater; 2019 Jul; 31(28):e1806620. PubMed ID: 31099081 [TBL] [Abstract][Full Text] [Related]
39. Is the Solid Electrolyte Interphase an Extra-Charge Reservoir in Li-Ion Batteries? Rezvani SJ; Gunnella R; Witkowska A; Mueller F; Pasqualini M; Nobili F; Passerini S; Cicco AD ACS Appl Mater Interfaces; 2017 Feb; 9(5):4570-4576. PubMed ID: 28084724 [TBL] [Abstract][Full Text] [Related]
40. Investigation of the Na Intercalation Mechanism into Nanosized V2O5/C Composite Cathode Material for Na-Ion Batteries. Ali G; Lee JH; Oh SH; Cho BW; Nam KW; Chung KY ACS Appl Mater Interfaces; 2016 Mar; 8(9):6032-9. PubMed ID: 26889957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]