These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 29271887)
1. Physiological and Pathological Roles of CaMKII-PP1 Signaling in the Brain. Shioda N; Fukunaga K Int J Mol Sci; 2017 Dec; 19(1):. PubMed ID: 29271887 [TBL] [Abstract][Full Text] [Related]
2. Nuclear Translocation of Calcium/Calmodulin-dependent Protein Kinase IIδ3 Promoted by Protein Phosphatase-1 Enhances Brain-derived Neurotrophic Factor Expression in Dopaminergic Neurons. Shioda N; Sawai M; Ishizuka Y; Shirao T; Fukunaga K J Biol Chem; 2015 Aug; 290(35):21663-75. PubMed ID: 26163515 [TBL] [Abstract][Full Text] [Related]
3. Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca Evans PR; Gerber KJ; Dammer EB; Duong DM; Goswami D; Lustberg DJ; Zou J; Yang JJ; Dudek SM; Griffin PR; Seyfried NT; Hepler JR J Proteome Res; 2018 Apr; 17(4):1700-1711. PubMed ID: 29518331 [TBL] [Abstract][Full Text] [Related]
4. Threonine-290 regulates nuclear translocation of the human pregnane X receptor through its phosphorylation/dephosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1. Sugatani J; Hattori Y; Noguchi Y; Yamaguchi M; Yamazaki Y; Ikari A Drug Metab Dispos; 2014 Oct; 42(10):1708-18. PubMed ID: 25074870 [TBL] [Abstract][Full Text] [Related]
5. CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca Chang JY; Parra-Bueno P; Laviv T; Szatmari EM; Lee SR; Yasuda R Neuron; 2017 May; 94(4):800-808.e4. PubMed ID: 28521133 [TBL] [Abstract][Full Text] [Related]
6. CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression. Woolfrey KM; O'Leary H; Goodell DJ; Robertson HR; Horne EA; Coultrap SJ; Dell'Acqua ML; Bayer KU J Biol Chem; 2018 Feb; 293(5):1551-1567. PubMed ID: 29196604 [TBL] [Abstract][Full Text] [Related]
7. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation. He Y; Kulasiri D; Samarasinghe S J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714 [TBL] [Abstract][Full Text] [Related]
8. A Modeling and Analysis Study Reveals That CaMKII in Synaptic Plasticity Is a Dominant Affecter in CaM Systems in a T286 Phosphorylation-Dependent Manner. Stevens-Bullmore H; Kulasiri D; Samarasinghe S Molecules; 2022 Sep; 27(18):. PubMed ID: 36144710 [TBL] [Abstract][Full Text] [Related]
9. An ultrasensitive Ca2+/calmodulin-dependent protein kinase II-protein phosphatase 1 switch facilitates specificity in postsynaptic calcium signaling. Bradshaw JM; Kubota Y; Meyer T; Schulman H Proc Natl Acad Sci U S A; 2003 Sep; 100(18):10512-7. PubMed ID: 12928489 [TBL] [Abstract][Full Text] [Related]
10. Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. Ordyan M; Bartol T; Kennedy M; Rangamani P; Sejnowski T PLoS Comput Biol; 2020 Jul; 16(7):e1008015. PubMed ID: 32678848 [TBL] [Abstract][Full Text] [Related]
11. Nitric oxide induces Ca2+-independent activity of the Ca2+/calmodulin-dependent protein kinase II (CaMKII). Coultrap SJ; Bayer KU J Biol Chem; 2014 Jul; 289(28):19458-65. PubMed ID: 24855644 [TBL] [Abstract][Full Text] [Related]
12. Bidirectional regulation of cytoplasmic polyadenylation element-binding protein phosphorylation by Ca2+/calmodulin-dependent protein kinase II and protein phosphatase 1 during hippocampal long-term potentiation. Atkins CM; Davare MA; Oh MC; Derkach V; Soderling TR J Neurosci; 2005 Jun; 25(23):5604-10. PubMed ID: 15944388 [TBL] [Abstract][Full Text] [Related]
13. Kinase-dead knock-in mouse reveals an essential role of kinase activity of Ca2+/calmodulin-dependent protein kinase IIalpha in dendritic spine enlargement, long-term potentiation, and learning. Yamagata Y; Kobayashi S; Umeda T; Inoue A; Sakagami H; Fukaya M; Watanabe M; Hatanaka N; Totsuka M; Yagi T; Obata K; Imoto K; Yanagawa Y; Manabe T; Okabe S J Neurosci; 2009 Jun; 29(23):7607-18. PubMed ID: 19515929 [TBL] [Abstract][Full Text] [Related]
14. Age-dependent targeting of protein phosphatase 1 to Ca2+/calmodulin-dependent protein kinase II by spinophilin in mouse striatum. Baucum AJ; Strack S; Colbran RJ PLoS One; 2012; 7(2):e31554. PubMed ID: 22348105 [TBL] [Abstract][Full Text] [Related]
15. Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. Strack S; Barban MA; Wadzinski BE; Colbran RJ J Neurochem; 1997 May; 68(5):2119-28. PubMed ID: 9109540 [TBL] [Abstract][Full Text] [Related]
16. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation. Kim K; Saneyoshi T; Hosokawa T; Okamoto K; Hayashi Y J Neurochem; 2016 Dec; 139(6):959-972. PubMed ID: 27207106 [TBL] [Abstract][Full Text] [Related]
17. Neuronal L-Type Calcium Channel Signaling to the Nucleus Requires a Novel CaMKIIα-Shank3 Interaction. Perfitt TL; Wang X; Dickerson MT; Stephenson JR; Nakagawa T; Jacobson DA; Colbran RJ J Neurosci; 2020 Mar; 40(10):2000-2014. PubMed ID: 32019829 [TBL] [Abstract][Full Text] [Related]
18. Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Blitzer RD; Connor JH; Brown GP; Wong T; Shenolikar S; Iyengar R; Landau EM Science; 1998 Jun; 280(5371):1940-2. PubMed ID: 9632393 [TBL] [Abstract][Full Text] [Related]
19. Quantitative proteomics analysis of CaMKII phosphorylation and the CaMKII interactome in the mouse forebrain. Baucum AJ; Shonesy BC; Rose KL; Colbran RJ ACS Chem Neurosci; 2015 Apr; 6(4):615-31. PubMed ID: 25650780 [TBL] [Abstract][Full Text] [Related]
20. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity. Coultrap SJ; Barcomb K; Bayer KU PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]