These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 29271887)
21. Regulation of the multifunctional Ca2+/calmodulin-dependent protein kinase II by the PP2C phosphatase PPM1F in fibroblasts. Harvey BP; Banga SS; Ozer HL J Biol Chem; 2004 Jun; 279(23):24889-98. PubMed ID: 15140879 [TBL] [Abstract][Full Text] [Related]
22. STDP in a bistable synapse model based on CaMKII and associated signaling pathways. Graupner M; Brunel N PLoS Comput Biol; 2007 Nov; 3(11):e221. PubMed ID: 18052535 [TBL] [Abstract][Full Text] [Related]
23. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy. Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573 [TBL] [Abstract][Full Text] [Related]
24. Phosphorylation status of the NR2B subunit of NMDA receptor regulates its interaction with calcium/calmodulin-dependent protein kinase II. Raveendran R; Devi Suma Priya S; Mayadevi M; Steephan M; Santhoshkumar TR; Cheriyan J; Sanalkumar R; Pradeep KK; James J; Omkumar RV J Neurochem; 2009 Jul; 110(1):92-105. PubMed ID: 19453375 [TBL] [Abstract][Full Text] [Related]
25. Dopamine depletion alters phosphorylation of striatal proteins in a model of Parkinsonism. Brown AM; Deutch AY; Colbran RJ Eur J Neurosci; 2005 Jul; 22(1):247-56. PubMed ID: 16029214 [TBL] [Abstract][Full Text] [Related]
27. Regulation and role of brain calcium/calmodulin-dependent protein kinase II. Colbran RJ Neurochem Int; 1992 Dec; 21(4):469-97. PubMed ID: 1338943 [TBL] [Abstract][Full Text] [Related]
28. A spatial model of autophosphorylation of Ca Bartol TM; Ordyan M; Sejnowski TJ; Rangamani P; Kennedy MB bioRxiv; 2024 Dec; ():. PubMed ID: 38352446 [TBL] [Abstract][Full Text] [Related]
29. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin. Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602 [TBL] [Abstract][Full Text] [Related]
30. Protein phosphatase 1-dependent transcriptional programs for long-term memory and plasticity. Gräff J; Koshibu K; Jouvenceau A; Dutar P; Mansuy IM Learn Mem; 2010 Jul; 17(7):355-63. PubMed ID: 20592054 [TBL] [Abstract][Full Text] [Related]
31. The Ras-like GTPase Rem2 is a potent inhibitor of calcium/calmodulin-dependent kinase II activity. Royer L; Herzog JJ; Kenny K; Tzvetkova B; Cochrane JC; Marr MT; Paradis S J Biol Chem; 2018 Sep; 293(38):14798-14811. PubMed ID: 30072381 [TBL] [Abstract][Full Text] [Related]
32. PKA and CaMKII mediate PI3K activation in bovine sperm by inhibition of the PKC/PP1 cascade. Rotfeld H; Hillman P; Ickowicz D; Breitbart H Reproduction; 2014 Mar; 147(3):347-56. PubMed ID: 24398875 [TBL] [Abstract][Full Text] [Related]
33. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Lisman JE; Zhabotinsky AM Neuron; 2001 Aug; 31(2):191-201. PubMed ID: 11502252 [TBL] [Abstract][Full Text] [Related]
34. Wip1 phosphatase modulates both long-term potentiation and long-term depression through the dephosphorylation of CaMKII. He ZY; Hu WY; Zhang M; Yang ZZ; Zhu HM; Xing D; Ma QH; Xiao ZC Cell Adh Migr; 2016 May; 10(3):237-47. PubMed ID: 27158969 [TBL] [Abstract][Full Text] [Related]
35. Domoic acid induces a long-lasting enhancement of CA1 field responses and impairs tetanus-induced long-term potentiation in rat hippocampal slices. Qiu S; Jebelli AK; Ashe JH; Currás-Collazo MC Toxicol Sci; 2009 Sep; 111(1):140-50. PubMed ID: 19564213 [TBL] [Abstract][Full Text] [Related]
36. CaMKII "autonomy" is required for initiating but not for maintaining neuronal long-term information storage. Buard I; Coultrap SJ; Freund RK; Lee YS; Dell'Acqua ML; Silva AJ; Bayer KU J Neurosci; 2010 Jun; 30(24):8214-20. PubMed ID: 20554872 [TBL] [Abstract][Full Text] [Related]
37. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice. Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554 [TBL] [Abstract][Full Text] [Related]
38. The role of low levels of fullerene C60 nanocrystals on enhanced learning and memory of rats through persistent CaMKII activation. Chen L; Miao Y; Chen L; Xu J; Wang X; Zhao H; Shen Y; Hu Y; Bian Y; Shen Y; Chen J; Zha Y; Wen LP; Wang M Biomaterials; 2014 Nov; 35(34):9269-79. PubMed ID: 25129570 [TBL] [Abstract][Full Text] [Related]
39. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice. Goh JJ; Manahan-Vaughan D Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420 [TBL] [Abstract][Full Text] [Related]