These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29271927)

  • 1. A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier.
    Hoshiar AK; Le TA; Amin FU; Kim MO; Yoon J
    Nanomaterials (Basel); 2017 Dec; 8(1):. PubMed ID: 29271927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized electromagnetic actuation method for aggregated nanoparticles steering.
    Hoshiar AK; Tuan-Anh Le ; Amin FU; Myeong Ok Kim ; Jungwon Yoon
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():885-888. PubMed ID: 29060014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on Aggregated Nanoparticles Steering during Deep Brain Membrane Crossing.
    Kafash Hoshiar A; Dadras Javan S; Le TA; Hairi Yazdi MR; Yoon J
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685194
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel scheme for nanoparticle steering in blood vessels using a functionalized magnetic field.
    Tehrani MD; Yoon JH; Kim MO; Yoon J
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):303-13. PubMed ID: 25163053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of magnetic nanoparticles crossing through a simplified blood-brain barrier model for Glioblastoma multiforme treatment.
    Gkountas AA; Polychronopoulos ND; Sofiadis GN; Karvelas EG; Spyrou LA; Sarris IE
    Comput Methods Programs Biomed; 2021 Nov; 212():106477. PubMed ID: 34736172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guidance of Magnetic Nanocontainers for Treating Alzheimer's Disease Using an Electromagnetic, Targeted Drug-Delivery Actuator.
    Do TD; Ul Amin F; Noh Y; Kim MO; Yoon J
    J Biomed Nanotechnol; 2016 Mar; 12(3):569-74. PubMed ID: 27280254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach.
    Pedram MZ; Shamloo A; Alasty A; Ghafar-Zadeh E
    Biosensors (Basel); 2016 Jun; 6(2):25. PubMed ID: 27314396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic-Based Manipulation Scheme of Magnetic Nanoparticles in a Multi-Branch Blood Vessel for Targeted Drug Delivery.
    Hamdipoor V; Afzal MR; Le TA; Yoon J
    Micromachines (Basel); 2018 Jan; 9(1):. PubMed ID: 30393293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and Actuation for MNPs Based on Magnetic Field-Free Point: Feasibility of Movable Electromagnetic Actuations.
    Kim C; Kim J; Park JO; Choi E; Kim CS
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33233414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactants, not size or zeta-potential influence blood-brain barrier passage of polymeric nanoparticles.
    Voigt N; Henrich-Noack P; Kockentiedt S; Hintz W; Tomas J; Sabel BA
    Eur J Pharm Biopharm; 2014 May; 87(1):19-29. PubMed ID: 24607790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-Time Two-Dimensional Magnetic Particle Imaging for Electromagnetic Navigation in Targeted Drug Delivery.
    Le TA; Zhang X; Hoshiar AK; Yoon J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28880220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Targeted Delivery to the Brain Using Magnetic Immunoliposomes and Magnetic Force.
    Thomsen LB; Linemann T; Birkelund S; Tarp GA; Moos T
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobiotechnology-based drug delivery in brain targeting.
    Dinda SC; Pattnaik G
    Curr Pharm Biotechnol; 2013; 14(15):1264-74. PubMed ID: 24910011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Silico Magnetic Nanocontainers Navigation in Blood Vessels: A Feedback Control Approach.
    Do TD; Noh Y; Kim MO; Yoon J
    J Nanosci Nanotechnol; 2016 Jun; 16(6):6368-73. PubMed ID: 27427720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superparamagnetic Iron Oxide Nanoparticles Modified with Tween 80 Pass through the Intact Blood-Brain Barrier in Rats under Magnetic Field.
    Huang Y; Zhang B; Xie S; Yang B; Xu Q; Tan J
    ACS Appl Mater Interfaces; 2016 May; 8(18):11336-41. PubMed ID: 27092793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoparticle enabled drug delivery across the blood brain barrier: in vivo and in vitro models, opportunities and challenges.
    Gidwani M; Singh AV
    Curr Pharm Biotechnol; 2014; 14(14):1201-12. PubMed ID: 24809717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields.
    Golovin YI; Gribanovsky SL; Golovin DY; Klyachko NL; Majouga AG; Master АM; Sokolsky M; Kabanov AV
    J Control Release; 2015 Dec; 219():43-60. PubMed ID: 26407671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remote control of the permeability of the blood-brain barrier by magnetic heating of nanoparticles: A proof of concept for brain drug delivery.
    Tabatabaei SN; Girouard H; Carret AS; Martel S
    J Control Release; 2015 May; 206():49-57. PubMed ID: 25724273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustic Bubble and Magnetic Actuation-Based Microrobot for Enhanced Multiphase Drug Delivery Efficiency.
    Park J; Kim Y; Jeong J; Jang D; Kim D; Chung S
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanobiotechnology-based strategies for crossing the blood-brain barrier.
    Jain KK
    Nanomedicine (Lond); 2012 Aug; 7(8):1225-33. PubMed ID: 22931448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.