These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29271932)

  • 21. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Systematic characterization of 3D-printed PCL/β-TCP scaffolds for biomedical devices and bone tissue engineering: influence of composition and porosity.
    Bruyas A; Lou F; Stahl AM; Gardner M; Maloney W; Goodman S; Yang YP
    J Mater Res; 2018 Jul; 33(14):1948-1959. PubMed ID: 30364693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique].
    Lian Q; Zhuang P; Li C; Jin Z; Li D
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of hierarchically porous silk fibroin-bioactive glass composite scaffold via indirect 3D printing: Effect of particle size on physico-mechanical properties and in vitro cellular behavior.
    Bidgoli MR; Alemzadeh I; Tamjid E; Khafaji M; Vossoughi M
    Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109688. PubMed ID: 31349405
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlled release of soy isoflavones from multifunctional 3D printed bone tissue engineering scaffolds.
    Sarkar N; Bose S
    Acta Biomater; 2020 Sep; 114():407-420. PubMed ID: 32652224
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vitamin D
    Vu AA; Bose S
    Ann Biomed Eng; 2020 Mar; 48(3):1025-1033. PubMed ID: 31168676
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioactivity and Bone Cell Formation with Poly-ε-Caprolactone/Bioceramic 3D Porous Scaffolds.
    Juan PK; Fan FY; Lin WC; Liao PB; Huang CF; Shen YK; Ruslin M; Lee CH
    Polymers (Basel); 2021 Aug; 13(16):. PubMed ID: 34451257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication and characterization of toughness-enhanced scaffolds comprising β-TCP/POC using the freeform fabrication system with micro-droplet jetting.
    Gao L; Li C; Chen F; Liu C
    Biomed Mater; 2015 Jun; 10(3):035009. PubMed ID: 26107985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds.
    Bertol LS; Schabbach R; Loureiro Dos Santos LA
    J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-element processed pyritum mixed to β-tricalcium phosphate to obtain a 3D-printed porous scaffold: An option for treatment of bone defects.
    Wang D; Hou J; Xia C; Wei C; Zhu Y; Qian W; Qi S; Wu Y; Shi Y; Qin K; Wu L; Yin F; Chen Z; Li W
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112326. PubMed ID: 34474877
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Design of 3D-Printed Polylactic Acid-Bioglass Composite Scaffold: A Potential Implant Material for Bone Tissue Engineering.
    Sultan S; Thomas N; Varghese M; Dalvi Y; Joy S; Hall S; Mathew AP
    Molecules; 2022 Oct; 27(21):. PubMed ID: 36364053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on
    Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Biomater Sci; 2013 Dec; 1(12):1250-1259. PubMed ID: 24729867
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Biological evaluation of three-dimensional printed co-poly lactic acid/glycolic acid/tri-calcium phosphate scaffold for bone reconstruction].
    Li SY; Zhou M; Lai YX; Geng YM; Cao SS; Chen XM
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2016 Nov; 51(11):661-666. PubMed ID: 27806758
    [No Abstract]   [Full Text] [Related]  

  • 35. Biocompatibility and osteogenesis of biomimetic Bioglass-Collagen-Phosphatidylserine composite scaffolds for bone tissue engineering.
    Xu C; Su P; Chen X; Meng Y; Yu W; Xiang AP; Wang Y
    Biomaterials; 2011 Feb; 32(4):1051-8. PubMed ID: 20980051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct inkjet writing type 1 bovine collagen/β-tricalcium phosphate scaffolds for bone regeneration.
    Cabrera Pereira A; Tovar N; Nayak VV; Mijares DQ; Smay JE; Torroni A; Flores RL; Witek L
    J Biomed Mater Res B Appl Biomater; 2024 Jan; 112(1):e35347. PubMed ID: 38247237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photocurable 3D-printed PMBG/TCP biphasic scaffold mimicking vasculature for bone regeneration.
    Zhang C; Ren Y; Kong W; Liu Y; Li H; Yang H; Cai B; Dai K; Wang C; Tang L; Niu H; Wang J
    Int J Bioprint; 2023; 9(5):767. PubMed ID: 37457937
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High biocompatibility and improved osteogenic potential of novel Ca-P/titania composite scaffolds designed for regeneration of load-bearing segmental bone defects.
    Cunha C; Sprio S; Panseri S; Dapporto M; Marcacci M; Tampieri A
    J Biomed Mater Res A; 2013 Jun; 101(6):1612-9. PubMed ID: 23172612
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of calcium phosphate-zirconia scaffold and human endometrial adult stem cells for bone tissue engineering.
    Alizadeh A; Moztarzadeh F; Ostad SN; Azami M; Geramizadeh B; Hatam G; Bizari D; Tavangar SM; Vasei M; Ai J
    Artif Cells Nanomed Biotechnol; 2016; 44(1):66-73. PubMed ID: 24810360
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced mechanical performance and biological evaluation of a PLGA coated β-TCP composite scaffold for load-bearing applications.
    Kang Y; Scully A; Young DA; Kim S; Tsao H; Sen M; Yang Y
    Eur Polym J; 2011 Aug; 47(8):1569-1577. PubMed ID: 21892228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.