BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 29272048)

  • 41. Chemical Conversion and Locking of the Imine Linkage: Enhancing the Functionality of Covalent Organic Frameworks.
    Cusin L; Peng H; Ciesielski A; Samorì P
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14236-14250. PubMed ID: 33491860
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Template-directed synthesis employing reversible imine bond formation.
    Meyer CD; Joiner CS; Stoddart JF
    Chem Soc Rev; 2007 Nov; 36(11):1705-23. PubMed ID: 18213980
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-Assembly in Water with N-Substituted Imines.
    Jiao T; Wu G; Zhang Y; Shen L; Lei Y; Wang CY; Fahrenbach AC; Li H
    Angew Chem Int Ed Engl; 2020 Oct; 59(42):18350-18367. PubMed ID: 31825146
    [TBL] [Abstract][Full Text] [Related]  

  • 44. One-Pot and Shape-Controlled Synthesis of Organic Cages.
    Zhao X; Liu Y; Zhang ZY; Wang Y; Jia X; Li C
    Angew Chem Int Ed Engl; 2021 Aug; 60(33):17904-17909. PubMed ID: 34036741
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A shape-persistent exo-functionalized [4 + 6] imine cage compound with a very high specific surface area.
    Schneider MW; Hauswald HJ; Stoll R; Mastalerz M
    Chem Commun (Camb); 2012 Oct; 48(79):9861-3. PubMed ID: 22892821
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties.
    Schneider MW; Oppel IM; Ott H; Lechner LG; Hauswald HJ; Stoll R; Mastalerz M
    Chemistry; 2012 Jan; 18(3):836-47. PubMed ID: 22170731
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Template-Free Synthesis of an Interlocked Covalent Organic Molecular Cage.
    Wang D; Zhang L; Zhao Y
    J Org Chem; 2022 Mar; 87(5):2767-2772. PubMed ID: 35072480
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Zirconium Metal-Organic Cages: Synthesis and Applications.
    El-Sayed EM; Yuan YD; Zhao D; Yuan D
    Acc Chem Res; 2022 Jun; 55(11):1546-1560. PubMed ID: 35579616
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organic cage compounds--from shape-persistency to function.
    Zhang G; Mastalerz M
    Chem Soc Rev; 2014 Mar; 43(6):1934-47. PubMed ID: 24336604
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Application of Homochiral Alkylated Organic Cages as Chiral Stationary Phases for Molecular Separations by Capillary Gas Chromatography.
    Xie S; Zhang J; Fu N; Wang B; Hu C; Yuan L
    Molecules; 2016 Nov; 21(11):. PubMed ID: 27834837
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Principles of Designing Extra-Large Pore Openings and Cages in Zeolitic Imidazolate Frameworks.
    Yang J; Zhang YB; Liu Q; Trickett CA; Gutiérrez-Puebla E; Monge MÁ; Cong H; Aldossary A; Deng H; Yaghi OM
    J Am Chem Soc; 2017 May; 139(18):6448-6455. PubMed ID: 28398726
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Facile transformation of imine covalent organic frameworks into ultrastable crystalline porous aromatic frameworks.
    Li X; Zhang C; Cai S; Lei X; Altoe V; Hong F; Urban JJ; Ciston J; Chan EM; Liu Y
    Nat Commun; 2018 Jul; 9(1):2998. PubMed ID: 30065278
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discrete Triptycene-Based Hexakis(metalsalphens): Extrinsic Soluble Porous Molecules of Isostructural Constitution.
    Reinhard D; Zhang WS; Rominger F; Curticean R; Wacker I; Schröder RR; Mastalerz M
    Chemistry; 2018 Aug; 24(44):11433-11437. PubMed ID: 29846023
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Shape-Controlled Synthesis and Self-Sorting of Covalent Organic Cage Compounds.
    Klotzbach S; Beuerle F
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10356-60. PubMed ID: 26136295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Highly-efficient synthesis of covalent porphyrinic cages via DABCO-templated imine condensation reactions.
    Ding H; Meng X; Cui X; Yang Y; Zhou T; Wang C; Zeller M; Wang C
    Chem Commun (Camb); 2014 Oct; 50(76):11162-4. PubMed ID: 25111246
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages.
    Cao L; Wang P; Miao X; Dong Y; Wang H; Duan H; Yu Y; Li X; Stang PJ
    J Am Chem Soc; 2018 Jun; 140(22):7005-7011. PubMed ID: 29746782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From Discrete Molecular Cages to a Network of Cages Exhibiting Enhanced CO
    Zhang L; Xiang L; Hang C; Liu W; Huang W; Pan Y
    Angew Chem Int Ed Engl; 2017 Jun; 56(27):7787-7791. PubMed ID: 28504831
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dynamic flow synthesis of porous organic cages.
    Briggs ME; Slater AG; Lunt N; Jiang S; Little MA; Greenaway RL; Hasell T; Battilocchio C; Ley SV; Cooper AI
    Chem Commun (Camb); 2015 Dec; 51(98):17390-3. PubMed ID: 26463103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Equilibration of Imine-Linked Polymers to Hexagonal Macrocycles Driven by Self-Assembly.
    Chavez AD; Evans AM; Flanders NC; Bisbey RP; Vitaku E; Chen LX; Dichtel WR
    Chemistry; 2018 Mar; 24(16):3989-3993. PubMed ID: 29388270
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [2+3] Amide Cages by Oxidation of [2+3] Imine Cages - Revisiting Molecular Hosts for Highly Efficient Nitrate Binding.
    Lauer JC; Bhat AS; Barwig C; Fritz N; Kirschbaum T; Rominger F; Mastalerz M
    Chemistry; 2022 Sep; 28(51):e202201527. PubMed ID: 35699158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.