These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 29272094)

  • 21. Synthesis and characterization of nano-composite ion-exchanger; its adsorption behavior.
    Nabi SA; Shahadat M; Bushra R; Shalla AH; Azam A
    Colloids Surf B Biointerfaces; 2011 Oct; 87(1):122-8. PubMed ID: 21640566
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal.
    Liu X; Hu Q; Fang Z; Zhang X; Zhang B
    Langmuir; 2009 Jan; 25(1):3-8. PubMed ID: 19032060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.
    Pan B; Qiu H; Pan B; Nie G; Xiao L; Lv L; Zhang W; Zhang Q; Zheng S
    Water Res; 2010 Feb; 44(3):815-24. PubMed ID: 19906397
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effective removal of ammonium nitrogen using titanate adsorbent: Capacity evaluation focusing on cation exchange.
    Zhang W; Wang Z; Liu Y; Feng J; Han J; Yan W
    Sci Total Environ; 2021 Jun; 771():144800. PubMed ID: 33545477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of toxic heavy metal lead (II) using chitosan oligosaccharide-graft-maleic anhydride/polyvinyl alcohol/silk fibroin composite.
    P A; K V; M S; T G; K R; P N S; Sukumaran A
    Int J Biol Macromol; 2017 Nov; 104(Pt B):1469-1482. PubMed ID: 28539265
    [TBL] [Abstract][Full Text] [Related]  

  • 26. One-dimensional zirconium-doped titanate nanostructures for rapid and capacitive removal of multiple heavy metal ions from water.
    Zou C; Zhao X; Xu Y
    Dalton Trans; 2018 Apr; 47(14):4909-4915. PubMed ID: 29546911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Removal of some heavy metal cations from aqueous solutions by spruce sawdust. II. Adsorption-desorption through column experiments.
    Marin J; Ayele J
    Environ Technol; 2003 Apr; 24(4):491-502. PubMed ID: 12755450
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites.
    Doong RA; Chiang LF
    Water Sci Technol; 2008; 58(10):1985-92. PubMed ID: 19039179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Copper(II) and lead(II) removal from aqueous solution in fixed-bed columns by manganese oxide coated zeolite.
    Han R; Zou W; Li H; Li Y; Shi J
    J Hazard Mater; 2006 Sep; 137(2):934-42. PubMed ID: 16621258
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Removal of Heavy Metals from Polluted Water with High Selectivity for Mercury(II) by 2-Imino-4-thiobiuret-Partially Reduced Graphene Oxide (IT-PRGO).
    Awad FS; AbouZeid KM; El-Maaty WMA; El-Wakil AM; El-Shall MS
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34230-34242. PubMed ID: 28880523
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and features of a Methylene Green-mediating sensor for hydrogen peroxide based on regenerated silk fibroin as immobilization matrix for peroxidase.
    Liu H; Liu Y; Qian J; Yu T; Denga J
    Talanta; 1996 Jan; 43(1):111-8. PubMed ID: 18966470
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immobilizing Arsenic and Copper Ions in Manure Using a Nanocomposite.
    Wang D; Zhang G; Zhou L; Cai D; Wu Z
    J Agric Food Chem; 2017 Oct; 65(41):8999-9005. PubMed ID: 28898073
    [TBL] [Abstract][Full Text] [Related]  

  • 33. One-step synthesis of magnetic graphene oxide nanocomposite and its application in magnetic solid phase extraction of heavy metal ions from biological samples.
    Sun J; Liang Q; Han Q; Zhang X; Ding M
    Talanta; 2015 Jan; 132():557-63. PubMed ID: 25476344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation and characterization of silicone rubber/nano-copper nanocomposites for use in intrauterine devices.
    Chen Y; Luo Y; Jia Z; Jia D; Chen J
    Biomed Mater Eng; 2014; 24(1):1269-74. PubMed ID: 24212022
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoporous Block Polymer Thin Films Functionalized with Bio-Inspired Ligands for the Efficient Capture of Heavy Metal Ions from Water.
    Weidman JL; Mulvenna RA; Boudouris BW; Phillip WA
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19152-19160. PubMed ID: 28521089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of some heavy metal cations from aqueous solutions by spruce sawdust. I. Study of the binding mechanism through batch experiments.
    Marin J; Ayele J
    Environ Technol; 2002 Oct; 23(10):1157-71. PubMed ID: 12465842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective removal of copper and lead ions by diethylenetriamine-functionalized adsorbent: behaviors and mechanisms.
    Liu C; Bai R; San Ly Q
    Water Res; 2008 Mar; 42(6-7):1511-22. PubMed ID: 18035389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.
    Sounthararajah DP; Loganathan P; Kandasamy J; Vigneswaran S
    J Hazard Mater; 2015 Apr; 287():306-16. PubMed ID: 25668299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods.
    Baker HM; Massadeh AM; Younes HA
    Environ Monit Assess; 2009 Oct; 157(1-4):319-30. PubMed ID: 18830802
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Preparation of novel nano-adsorbent based on organic-inorganic hybrid and their adsorption for heavy metals and organic pollutants presented in water environment.
    Jin X; Yu C; Li Y; Qi Y; Yang L; Zhao G; Hu H
    J Hazard Mater; 2011 Feb; 186(2-3):1672-80. PubMed ID: 21237563
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.