These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29272285)
1. Mean field analysis of algorithms for scale-free networks in molecular biology. Konini S; Janse van Rensburg EJ PLoS One; 2017; 12(12):e0189866. PubMed ID: 29272285 [TBL] [Abstract][Full Text] [Related]
2. Are RNA networks scale-free? Clote P J Math Biol; 2020 Apr; 80(5):1291-1321. PubMed ID: 31950258 [TBL] [Abstract][Full Text] [Related]
3. Structural transitions in scale-free networks. Szabó G; Alava M; Kertész J Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056102. PubMed ID: 12786215 [TBL] [Abstract][Full Text] [Related]
4. Statistical-mechanical iterative algorithms on complex networks. Ohkubo J; Yasuda M; Tanaka K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046135. PubMed ID: 16383496 [TBL] [Abstract][Full Text] [Related]
5. Irreversible bimolecular chemical reactions on directed scale-free networks. Kwon S; Kim Y Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042148. PubMed ID: 24229156 [TBL] [Abstract][Full Text] [Related]
6. Mean-field theory for clustering coefficients in Barabási-Albert networks. Fronczak A; Fronczak P; Hołyst JA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046126. PubMed ID: 14683021 [TBL] [Abstract][Full Text] [Related]
7. Scale-free networks with tunable degree-distribution exponents. Lee HY; Chan HY; Hui PM Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):067102. PubMed ID: 15244781 [TBL] [Abstract][Full Text] [Related]
8. Finite-size scaling of synchronized oscillation on complex networks. Hong H; Park H; Tang LH Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066104. PubMed ID: 18233895 [TBL] [Abstract][Full Text] [Related]
9. Mean field theory for biology inspired duplication-divergence network model. Cai S; Liu Z; Lee HC Chaos; 2015 Aug; 25(8):083106. PubMed ID: 26328557 [TBL] [Abstract][Full Text] [Related]
10. Growing optimal scale-free networks via likelihood. Small M; Li Y; Stemler T; Judd K Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042801. PubMed ID: 25974541 [TBL] [Abstract][Full Text] [Related]
11. Impact of interaction style and degree on the evolution of cooperation on Barabási-Albert scale-free network. Xie F; Shi J; Lin J PLoS One; 2017; 12(8):e0182523. PubMed ID: 28806757 [TBL] [Abstract][Full Text] [Related]
12. Self avoiding paths routing algorithm in scale-free networks. Rachadi A; Jedra M; Zahid N Chaos; 2013 Mar; 23(1):013114. PubMed ID: 23556951 [TBL] [Abstract][Full Text] [Related]
13. Finite-size effects in Barabási-Albert growing networks. Waclaw B; Sokolov IM Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056114. PubMed ID: 17677140 [TBL] [Abstract][Full Text] [Related]
14. Random initial condition in small Barabasi-Albert networks and deviations from the scale-free behavior. Guimarães PR; de Aguiar MA; Bascompte J; Jordano P; dos Reis SF Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):037101. PubMed ID: 15903635 [TBL] [Abstract][Full Text] [Related]
15. Local versus global knowledge in the Barabási-Albert scale-free network model. Gómez-Gardeñes J; Moreno Y Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):037103. PubMed ID: 15089443 [TBL] [Abstract][Full Text] [Related]
16. Fixed-points in random Boolean networks: The impact of parallelism in the Barabási-Albert scale-free topology case. Moisset de Espanés P; Osses A; Rapaport I Biosystems; 2016 Dec; 150():167-176. PubMed ID: 27765600 [TBL] [Abstract][Full Text] [Related]
17. Universal scaling of distances in complex networks. Hołyst JA; Sienkiewicz J; Fronczak A; Fronczak P; Suchecki K Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026108. PubMed ID: 16196645 [TBL] [Abstract][Full Text] [Related]
18. Identifying influential spreaders in complex networks for disease spread and control. Wei X; Zhao J; Liu S; Wang Y Sci Rep; 2022 Apr; 12(1):5550. PubMed ID: 35365715 [TBL] [Abstract][Full Text] [Related]
19. Number of loops of size h in growing scale-free networks. Bianconi G; Capocci A Phys Rev Lett; 2003 Feb; 90(7):078701. PubMed ID: 12633275 [TBL] [Abstract][Full Text] [Related]
20. Voter models on weighted networks. Baronchelli A; Castellano C; Pastor-Satorras R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 2):066117. PubMed ID: 21797451 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]