These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 29272285)
21. Spread of information and infection on finite random networks. Isham V; Kaczmarska J; Nekovee M Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046128. PubMed ID: 21599261 [TBL] [Abstract][Full Text] [Related]
22. Nonequilibrium phase transitions and finite-size scaling in weighted scale-free networks. Karsai M; Juhász R; Iglói F Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 2):036116. PubMed ID: 16605607 [TBL] [Abstract][Full Text] [Related]
23. The Fractional Preferential Attachment Scale-Free Network Model. Rak R; Rak E Entropy (Basel); 2020 Apr; 22(5):. PubMed ID: 33286281 [TBL] [Abstract][Full Text] [Related]
24. Subgraphs in random networks. Itzkovitz S; Milo R; Kashtan N; Ziv G; Alon U Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026127. PubMed ID: 14525069 [TBL] [Abstract][Full Text] [Related]
25. Markov chain-based numerical method for degree distributions of growing networks. Shi D; Chen Q; Liu L Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036140. PubMed ID: 15903526 [TBL] [Abstract][Full Text] [Related]
26. Structural properties of the synchronized cluster on complex networks. Kim Y; Ko Y; Yook SH Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011139. PubMed ID: 20365355 [TBL] [Abstract][Full Text] [Related]
27. Supremacy distribution in evolving networks. Hołyst JA; Fronczak A; Fronczak P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046119. PubMed ID: 15600472 [TBL] [Abstract][Full Text] [Related]
28. Random walks on complex networks with multiple resetting nodes: A renewal approach. Wang S; Chen H; Huang F Chaos; 2021 Sep; 31(9):093135. PubMed ID: 34598469 [TBL] [Abstract][Full Text] [Related]
29. Influences of degree inhomogeneity on average path length and random walks in disassortative scale-free networks. Zhang Z; Zhang Y; Zhou S; Yin M; Guan J J Math Phys; 2009 Mar; 50(3):033514. PubMed ID: 32255840 [TBL] [Abstract][Full Text] [Related]
30. Derivation of the percolation threshold for the network model of Barabási and Albert. Pietsch W Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066112. PubMed ID: 16906919 [TBL] [Abstract][Full Text] [Related]
31. Maximal planar networks with large clustering coefficient and power-law degree distribution. Zhou T; Yan G; Wang BH Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046141. PubMed ID: 15903760 [TBL] [Abstract][Full Text] [Related]
32. Markovian iterative method for degree distributions of growing networks. Shi D; Zhou H; Liu L Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 1):031105. PubMed ID: 21230023 [TBL] [Abstract][Full Text] [Related]
33. Accelerated growth in outgoing links in evolving networks: deterministic versus stochastic picture. Sen P Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 2):046107. PubMed ID: 15169069 [TBL] [Abstract][Full Text] [Related]
34. Gene expression complex networks: synthesis, identification, and analysis. Lopes FM; Cesar RM; Costa Lda F J Comput Biol; 2011 Oct; 18(10):1353-67. PubMed ID: 21548810 [TBL] [Abstract][Full Text] [Related]
35. A Maximum Entropy Method for the Prediction of Size Distributions. Metzig C; Colijn C Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286086 [TBL] [Abstract][Full Text] [Related]
36. Clustering properties of a generalized critical Euclidean network. Sen P; Manna SS Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026104. PubMed ID: 14525046 [TBL] [Abstract][Full Text] [Related]
37. Irreversible opinion spreading on scale-free networks. Candia J Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026110. PubMed ID: 17358397 [TBL] [Abstract][Full Text] [Related]
38. Modeling complex metabolic reactions, ecological systems, and financial and legal networks with MIANN models based on Markov-Wiener node descriptors. Duardo-Sánchez A; Munteanu CR; Riera-Fernández P; López-Díaz A; Pazos A; González-Díaz H J Chem Inf Model; 2014 Jan; 54(1):16-29. PubMed ID: 24320872 [TBL] [Abstract][Full Text] [Related]
39. Approaching the thermodynamic limit in equilibrated scale-free networks. Waclaw B; Bogacz L; Janke W Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061125. PubMed ID: 19256820 [TBL] [Abstract][Full Text] [Related]
40. Distinct scalings for mean first-passage time of random walks on scale-free networks with the same degree sequence. Zhang Z; Xie W; Zhou S; Li M; Guan J Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 1):061111. PubMed ID: 20365122 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]