BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29272722)

  • 21. Impact of degradable macromer content in a poly(ethylene glycol) hydrogel on neural cell metabolic activity, redox state, proliferation, and differentiation.
    Lampe KJ; Bjugstad KB; Mahoney MJ
    Tissue Eng Part A; 2010 Jun; 16(6):1857-66. PubMed ID: 20067398
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomimicking Robust Hydrogel for the Mesenchymal Stem Cell Carrier.
    Oh B; Melchert RB; Lee CH
    Pharm Res; 2015 Oct; 32(10):3213-27. PubMed ID: 25911596
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Double-Network Hydrogel with Tunable Mechanical Performance and Biocompatibility for the Fabrication of Stem Cells-Encapsulated Fibers and 3D Assemble.
    Liang Z; Liu C; Li L; Xu P; Luo G; Ding M; Liang Q
    Sci Rep; 2016 Sep; 6():33462. PubMed ID: 27628933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differentiation of cardiosphere-derived cells into a mature cardiac lineage using biodegradable poly(N-isopropylacrylamide) hydrogels.
    Li Z; Guo X; Matsushita S; Guan J
    Biomaterials; 2011 Apr; 32(12):3220-32. PubMed ID: 21296413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.
    Jia J; Coyle RC; Richards DJ; Berry CL; Barrs RW; Biggs J; James Chou C; Trusk TC; Mei Y
    Acta Biomater; 2016 Nov; 45():110-120. PubMed ID: 27612960
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A conductive PEDOT/alginate porous scaffold as a platform to modulate the biological behaviors of brown adipose-derived stem cells.
    Yang B; Yao F; Ye L; Hao T; Zhang Y; Zhang L; Dong D; Fang W; Wang Y; Zhang X; Wang C; Li J
    Biomater Sci; 2020 Jun; 8(11):3173-3185. PubMed ID: 32367084
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhancement of human adipose-derived stem cell spheroid differentiation in an in situ enzyme-crosslinked gelatin hydrogel.
    Tsai CC; Hong YJ; Lee RJ; Cheng NC; Yu J
    J Mater Chem B; 2019 Feb; 7(7):1064-1075. PubMed ID: 32254774
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytocompatible in situ forming chitosan/hyaluronan hydrogels via a metal-free click chemistry for soft tissue engineering.
    Fan M; Ma Y; Mao J; Zhang Z; Tan H
    Acta Biomater; 2015 Jul; 20():60-68. PubMed ID: 25839124
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In Vivo Osteogenic Differentiation of Human Dental Pulp Stem Cells Embedded in an Injectable In Vivo-Forming Hydrogel.
    Jang JY; Park SH; Park JH; Lee BK; Yun JH; Lee B; Kim JH; Min BH; Kim MS
    Macromol Biosci; 2016 Aug; 16(8):1158-69. PubMed ID: 27074749
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Concentration dependent survival and neural differentiation of murine embryonic stem cells cultured on polyethylene glycol dimethacrylate hydrogels possessing a continuous concentration gradient of n-cadherin derived peptide His-Ala-Val-Asp-Lle.
    Lim HJ; Mosley MC; Kurosu Y; Smith Callahan LA
    Acta Biomater; 2017 Jul; 56():153-160. PubMed ID: 27915022
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cardiac-Derived Extracellular Matrix Enhances Cardiogenic Properties of Human Cardiac Progenitor Cells.
    Gaetani R; Yin C; Srikumar N; Braden R; Doevendans PA; Sluijter JP; Christman KL
    Cell Transplant; 2016; 25(9):1653-1663. PubMed ID: 26572770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neural stem cells encapsulated in a functionalized self-assembling peptide hydrogel for brain tissue engineering.
    Cheng TY; Chen MH; Chang WH; Huang MY; Wang TW
    Biomaterials; 2013 Mar; 34(8):2005-16. PubMed ID: 23237515
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal changes in peg hydrogel structure influence human mesenchymal stem cell proliferation and matrix mineralization.
    Nuttelman CR; Kloxin AM; Anseth KS
    Adv Exp Med Biol; 2006; 585():135-49. PubMed ID: 17120782
    [No Abstract]   [Full Text] [Related]  

  • 36. Tendon regeneration with a novel tendon hydrogel: in vitro effects of platelet-rich plasma on rat adipose-derived stem cells.
    Crowe CS; Chiou G; McGoldrick R; Hui K; Pham H; Chang J
    Plast Reconstr Surg; 2015 Jun; 135(6):981e-989e. PubMed ID: 26017614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple model for the perfusion of porous hydrogel scaffolds under culture in a sustentation like bioreactor.
    Knapp Y; Deplano V; Bertrand E
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():268-9. PubMed ID: 23923937
    [No Abstract]   [Full Text] [Related]  

  • 38. Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels.
    van Marion MH; Bax NA; van Turnhout MC; Mauretti A; van der Schaft DW; Goumans MJ; Bouten CV
    J Mol Cell Cardiol; 2015 Oct; 87():79-91. PubMed ID: 26278995
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photopolymerizable hydrogels for tissue engineering applications.
    Nguyen KT; West JL
    Biomaterials; 2002 Nov; 23(22):4307-14. PubMed ID: 12219820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ spray deposition of cell-loaded, thermally and chemically gelling hydrogel coatings for tissue regeneration.
    Pehlivaner Kara MO; Ekenseair AK
    J Biomed Mater Res A; 2016 Oct; 104(10):2383-93. PubMed ID: 27153299
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.