BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29272794)

  • 1. Ozonation of norfloxacin and levofloxacin in water: Specific reaction rate constants and defluorination reaction.
    Ling W; Ben W; Xu K; Zhang Y; Yang M; Qiang Z
    Chemosphere; 2018 Mar; 195():252-259. PubMed ID: 29272794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Levofloxacin oxidation by ozone and hydroxyl radicals: kinetic study, transformation products and toxicity.
    Hamdi El Najjar N; Touffet A; Deborde M; Journel R; Leitner NK
    Chemosphere; 2013 Oct; 93(4):604-11. PubMed ID: 23850240
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of chlorination behaviors between norfloxacin and ofloxacin: Reaction kinetics, oxidation products and reaction pathways.
    Wang X; Li Y; Li R; Yang H; Zhou B; Wang X; Xie Y
    Chemosphere; 2019 Jan; 215():124-132. PubMed ID: 30316154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of triclosan oxidation by aqueous ozone and consequent loss of antibacterial activity: relevance to municipal wastewater ozonation.
    Suarez S; Dodd MC; Omil F; von Gunten U
    Water Res; 2007 Jun; 41(12):2481-90. PubMed ID: 17467034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of norfloxacin degradation induced by plasma-produced ozone using surface-enhanced Raman spectroscopy.
    Huang Q; Fang C; Muhammad M; Yao G
    Chemosphere; 2020 Jan; 238():124618. PubMed ID: 31470309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of fluoroquinolone antibiotics and structurally related amines by chlorine dioxide: Reaction kinetics, product and pathway evaluation.
    Wang P; He YL; Huang CH
    Water Res; 2010 Dec; 44(20):5989-98. PubMed ID: 20708211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Levofloxacin ozonation in water: rate determining process parameters and reaction pathway elucidation.
    Witte BD; Langenhove HV; Hemelsoet K; Demeestere K; Wispelaere PD; Van Speybroeck V; Dewulf J
    Chemosphere; 2009 Jul; 76(5):683-9. PubMed ID: 19394669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimicrobial activity and acute toxicity of ozonated lomefloxacin solution.
    de Oliveira AMD; Maniero MG; Rodrigues-Silva C; Guimarães JR
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6252-6260. PubMed ID: 28063087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast removal of the antibiotic flumequine from aqueous solution by ozonation: Influencing factors, reaction pathways, and toxicity evaluation.
    Feng M; Yan L; Zhang X; Sun P; Yang S; Wang L; Wang Z
    Sci Total Environ; 2016 Jan; 541():167-175. PubMed ID: 26409146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation of fluoroquinolone antibiotics by peroxymonosulfate without activation: Kinetics, products, and antibacterial deactivation.
    Zhou Y; Gao Y; Pang SY; Jiang J; Yang Y; Ma J; Yang Y; Duan J; Guo Q
    Water Res; 2018 Nov; 145():210-219. PubMed ID: 30142519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-mediated oxidation of fluoroquinolone antibiotics in water: A review on kinetics, transformation products, and toxicity assessment.
    Feng M; Wang Z; Dionysiou DD; Sharma VK
    J Hazard Mater; 2018 Feb; 344():1136-1154. PubMed ID: 28919428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct photochemistry of three fluoroquinolone antibacterials: norfloxacin, ofloxacin, and enrofloxacin.
    Wammer KH; Korte AR; Lundeen RA; Sundberg JE; McNeill K; Arnold WA
    Water Res; 2013 Jan; 47(1):439-48. PubMed ID: 23141476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.
    Ge L; Na G; Zhang S; Li K; Zhang P; Ren H; Yao Z
    Sci Total Environ; 2015 Sep; 527-528():12-7. PubMed ID: 25956144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquatic photochemistry of fluoroquinolone antibiotics: kinetics, pathways, and multivariate effects of main water constituents.
    Ge L; Chen J; Wei X; Zhang S; Qiao X; Cai X; Xie Q
    Environ Sci Technol; 2010 Apr; 44(7):2400-5. PubMed ID: 20205456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ozonation kinetics for the degradation of phthalate esters in water and the reduction of toxicity in the process of O3/H2O2.
    Wen G; Ma J; Liu ZQ; Zhao L
    J Hazard Mater; 2011 Nov; 195():371-7. PubMed ID: 21906876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ozonation of parabens in aqueous solution: kinetics and mechanism of degradation.
    Tay KS; Rahman NA; Abas MR
    Chemosphere; 2010 Dec; 81(11):1446-53. PubMed ID: 20875662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ozonation of benzotriazole and methylindole: Kinetic modeling, identification of intermediates and reaction mechanisms.
    Benitez FJ; Acero JL; Real FJ; Roldán G; Rodríguez E
    J Hazard Mater; 2015 Jan; 282():224-32. PubMed ID: 24953706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ozonation of pharmaceutical compounds: Rate constants and elimination in various water matrices.
    Javier Benitez F; Acero JL; Real FJ; Roldán G
    Chemosphere; 2009 Sep; 77(1):53-9. PubMed ID: 19545885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics and mechanism for omethoate degradation by catalytic ozonation with Fe(III)-loaded activated carbon in water.
    Qiang Z; Ling W; Tian F
    Chemosphere; 2013 Feb; 90(6):1966-72. PubMed ID: 23177714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of fluoroquinolone antibiotics: Mechanism, residual antibacterial activity and toxicity change.
    Zhu L; Santiago-Schübel B; Xiao H; Hollert H; Kueppers S
    Water Res; 2016 Oct; 102():52-62. PubMed ID: 27318447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.