These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
645 related articles for article (PubMed ID: 29272803)
21. An exploratory study using QICAR models for prediction of adsorption capacity of multi-walled carbon nanotubes for heavy metal ions. Salahinejad M; Zolfonoun E SAR QSAR Environ Res; 2018 Dec; 29(12):997-1009. PubMed ID: 30411640 [TBL] [Abstract][Full Text] [Related]
22. Three dimensional graphene materials doped with heteroatoms for extraction and adsorption of environmental pollutants in wastewater. Guo Z; Feng Y; Zhang C; Huang G; Chi J; Yao Q; Zhang G; Chen X J Environ Sci Health C Toxicol Carcinog; 2021; 39(1):17-43. PubMed ID: 33554725 [TBL] [Abstract][Full Text] [Related]
23. Aminopolycarboxylic acid functionalized adsorbents for heavy metals removal from water. Repo E; Warchoł JK; Bhatnagar A; Mudhoo A; Sillanpää M Water Res; 2013 Sep; 47(14):4812-32. PubMed ID: 23863393 [TBL] [Abstract][Full Text] [Related]
24. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Ersan G; Kaya Y; Apul OG; Karanfil T Sci Total Environ; 2016 Sep; 565():811-817. PubMed ID: 27107611 [TBL] [Abstract][Full Text] [Related]
25. Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Babel S; Kurniawan TA J Hazard Mater; 2003 Feb; 97(1-3):219-43. PubMed ID: 12573840 [TBL] [Abstract][Full Text] [Related]
26. Adsorptive removal of heavy metals from aqueous solutions: Progress of adsorbents development and their effectiveness. Ismail UM; Vohra MS; Onaizi SA Environ Res; 2024 Jun; 251(Pt 1):118562. PubMed ID: 38447605 [TBL] [Abstract][Full Text] [Related]
27. Biotic Strategies for Toxic Heavy Metal Decontamination. Mishra RK; Sharma V Recent Pat Biotechnol; 2017; 11(3):218-228. PubMed ID: 28413994 [TBL] [Abstract][Full Text] [Related]
28. Graphene, electrospun membranes and granular activated carbon for eliminating heavy metals, pesticides and bacteria in water and wastewater treatment processes. Rajapaksha P P; Power A; Chandra S; Chapman J Analyst; 2018 Nov; 143(23):5629-5645. PubMed ID: 30357153 [TBL] [Abstract][Full Text] [Related]
29. Removal of metals from aqueous solutions using natural chitinous materials. Rae IB; Gibb SW Water Sci Technol; 2003; 47(10):189-96. PubMed ID: 12862235 [TBL] [Abstract][Full Text] [Related]
30. Adsorption of heavy metals from water using banana and orange peels. Annadural G; Juang RS; Lee DJ Water Sci Technol; 2003; 47(1):185-90. PubMed ID: 12578193 [TBL] [Abstract][Full Text] [Related]
31. Removal of heavy metals through adsorption using sand. Awan MA; Qazi IA; Khalid I J Environ Sci (China); 2003 May; 15(3):413-6. PubMed ID: 12938995 [TBL] [Abstract][Full Text] [Related]
32. Enhanced Heavy Metal Removal from Acid Mine Drainage Wastewater Using Double-Oxidized Multiwalled Carbon Nanotubes. Rodríguez C; Leiva E Molecules; 2019 Dec; 25(1):. PubMed ID: 31892164 [TBL] [Abstract][Full Text] [Related]
33. Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Yang HY; Han ZJ; Yu SF; Pey KL; Ostrikov K; Karnik R Nat Commun; 2013; 4():2220. PubMed ID: 23941894 [TBL] [Abstract][Full Text] [Related]
34. Evaluation of an organoclay, an organoclay-anthracite blend, clinoptilolite, and hydroxy-apatite as sorbents for heavy metal removal from water. Tillman FD; Bartelt-Hunt SL; Smith JA; Alther GR Bull Environ Contam Toxicol; 2004 Jun; 72(6):1134-41. PubMed ID: 15362441 [No Abstract] [Full Text] [Related]
35. Adsorption of Sulfamethazine Drug onto the Modified Derivatives of Carbon Nanotubes at Different pH. Mohamed Ameen H; Kunsági-Máté S; Noveczky P; Szente L; Lemli B Molecules; 2020 May; 25(11):. PubMed ID: 32471230 [TBL] [Abstract][Full Text] [Related]
36. Increased Adsorption of Heavy Metal Ions in Multi-Walled Carbon Nanotubes with Improved Dispersion Stability. Rodríguez C; Briano S; Leiva E Molecules; 2020 Jul; 25(14):. PubMed ID: 32650371 [TBL] [Abstract][Full Text] [Related]
38. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Upadhyayula VK; Deng S; Mitchell MC; Smith GB Sci Total Environ; 2009 Dec; 408(1):1-13. PubMed ID: 19819525 [TBL] [Abstract][Full Text] [Related]
39. Safety considerations for graphene: lessons learnt from carbon nanotubes. Bussy C; Ali-Boucetta H; Kostarelos K Acc Chem Res; 2013 Mar; 46(3):692-701. PubMed ID: 23163827 [TBL] [Abstract][Full Text] [Related]
40. Coupled removal of organic compounds and heavy metals by titanate/carbon nanotube composites. Doong RA; Chiang LF Water Sci Technol; 2008; 58(10):1985-92. PubMed ID: 19039179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]