BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 29272835)

  • 1. Feature selection approaches for predictive modelling of groundwater nitrate pollution: An evaluation of filters, embedded and wrapper methods.
    Rodriguez-Galiano VF; Luque-Espinar JA; Chica-Olmo M; Mendes MP
    Sci Total Environ; 2018 May; 624():661-672. PubMed ID: 29272835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modeling of groundwater nitrate pollution using Random Forest and multisource variables related to intrinsic and specific vulnerability: a case study in an agricultural setting (Southern Spain).
    Rodriguez-Galiano V; Mendes MP; Garcia-Soldado MJ; Chica-Olmo M; Ribeiro L
    Sci Total Environ; 2014 Apr; 476-477():189-206. PubMed ID: 24463255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-stage hybrid feature selection algorithms for diagnosing erythemato-squamous diseases.
    Xie J; Lei J; Xie W; Shi Y; Liu X
    Health Inf Sci Syst; 2013; 1():10. PubMed ID: 26042184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting uncertainty of machine learning models for modelling nitrate pollution of groundwater using quantile regression and UNEEC methods.
    Rahmati O; Choubin B; Fathabadi A; Coulon F; Soltani E; Shahabi H; Mollaefar E; Tiefenbacher J; Cipullo S; Ahmad BB; Tien Bui D
    Sci Total Environ; 2019 Oct; 688():855-866. PubMed ID: 31255823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A machine learning framework for spatio-temporal vulnerability mapping of groundwaters to nitrate in a data scarce region in Lenjanat Plain, Iran.
    Jalali R; Tishehzan P; Hashemi H
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):42088-42110. PubMed ID: 38862797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large scale prediction of groundwater nitrate concentrations from spatial data using machine learning.
    Knoll L; Breuer L; Bach M
    Sci Total Environ; 2019 Jun; 668():1317-1327. PubMed ID: 31018471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination.
    Sajedi-Hosseini F; Malekian A; Choubin B; Rahmati O; Cipullo S; Coulon F; Pradhan B
    Sci Total Environ; 2018 Dec; 644():954-962. PubMed ID: 30743892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel feature selection approach for biomedical data classification.
    Peng Y; Wu Z; Jiang J
    J Biomed Inform; 2010 Feb; 43(1):15-23. PubMed ID: 19647098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A random forest classifier for lymph diseases.
    Azar AT; Elshazly HI; Hassanien AE; Elkorany AM
    Comput Methods Programs Biomed; 2014 Feb; 113(2):465-73. PubMed ID: 24290902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A classification system based on a new wrapper feature selection algorithm for the diagnosis of primary and secondary polycythemia.
    Korfiatis VCh; Asvestas PA; Delibasis KK; Matsopoulos GK
    Comput Biol Med; 2013 Dec; 43(12):2118-26. PubMed ID: 24290929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Groundwater spring potential mapping using population-based evolutionary algorithms and data mining methods.
    Chen W; Tsangaratos P; Ilia I; Duan Z; Chen X
    Sci Total Environ; 2019 Sep; 684():31-49. PubMed ID: 31150874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran.
    Naghibi SA; Pourghasemi HR; Dixon B
    Environ Monit Assess; 2016 Jan; 188(1):44. PubMed ID: 26687087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of rotation forest with decision trees as base classifier and a novel ensemble model in spatial modeling of groundwater potential.
    Naghibi SA; Dolatkordestani M; Rezaei A; Amouzegari P; Heravi MT; Kalantar B; Pradhan B
    Environ Monit Assess; 2019 Mar; 191(4):248. PubMed ID: 30919064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial assessment of animal manure spreading and groundwater nitrate pollution.
    Infascelli R; Pelorosso R; Boccia L
    Geospat Health; 2009 Nov; 4(1):27-38. PubMed ID: 19908188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature extraction and pattern classification of colorectal polyps in colonoscopic imaging.
    Fu JJ; Yu YW; Lin HM; Chai JW; Chen CC
    Comput Med Imaging Graph; 2014 Jun; 38(4):267-75. PubMed ID: 24495469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of finite sample size on feature selection and classification: a simulation study.
    Way TW; Sahiner B; Hadjiiski LM; Chan HP
    Med Phys; 2010 Feb; 37(2):907-20. PubMed ID: 20229900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Susceptibility Assessment of Groundwater Nitrate Contamination Using an Ensemble Machine Learning Approach.
    Hosseini FS; Choubin B; Bagheri-Gavkosh M; Karimi O; Taromideh F; Mako C
    Ground Water; 2023; 61(4):510-516. PubMed ID: 36127852
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of machine learning models for groundwater quality assessment.
    Bedi S; Samal A; Ray C; Snow D
    Environ Monit Assess; 2020 Nov; 192(12):776. PubMed ID: 33219864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Nitrate pollution in groundwater for drinking and its affecting factors in Hailun, northeast China].
    Zhao XF; Yang LR; Shi Q; Ma Y; Zhang YY; Chen LD; Zheng HF
    Huan Jing Ke Xue; 2008 Nov; 29(11):2993-8. PubMed ID: 19186792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Nitrate contamination of the groundwater of the Akkar Plain in northern Lebanon].
    Halwani J; Baroudi BO; Wartel M
    Sante; 1999; 9(4):219-23. PubMed ID: 10623868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.