These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 29272915)
1. Shape-Dependent Dissolution and Cellular Uptake of Silver Nanoparticles. Graf C; Nordmeyer D; Sengstock C; Ahlberg S; Diendorf J; Raabe J; Epple M; Köller M; Lademann J; Vogt A; Rancan F; Rühl E Langmuir; 2018 Jan; 34(4):1506-1519. PubMed ID: 29272915 [TBL] [Abstract][Full Text] [Related]
2. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2. Tsuji M; Gomi S; Maeda Y; Matsunaga M; Hikino S; Uto K; Tsuji T; Kawazumi H Langmuir; 2012 Jun; 28(24):8845-61. PubMed ID: 22506506 [TBL] [Abstract][Full Text] [Related]
3. Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates. Yang J; Zhang Q; Lee JY; Too HP J Colloid Interface Sci; 2007 Apr; 308(1):157-61. PubMed ID: 17240390 [TBL] [Abstract][Full Text] [Related]
4. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Peretyazhko TS; Zhang Q; Colvin VL Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014 [TBL] [Abstract][Full Text] [Related]
5. Observation of Coalescence Process of Silver Nanospheres During Shape Transformation to Nanoprisms. Yu P; Huang J; Tang J Nanoscale Res Lett; 2011 Dec; 6(1):46. PubMed ID: 27502668 [TBL] [Abstract][Full Text] [Related]
6. The impact of size on the fate and toxicity of nanoparticulate silver in aquatic systems. Angel BM; Batley GE; Jarolimek CV; Rogers NJ Chemosphere; 2013 Sep; 93(2):359-65. PubMed ID: 23732009 [TBL] [Abstract][Full Text] [Related]
7. Preparation of silver nanoprisms using poly(N-vinyl-2-pyrrolidone) as a colloid-stabilizing agent and the effect of silver nanoparticles on the photophysical properties of cationic dyes. Machulek Junior A; de Oliveira HP; Gehlen MH Photochem Photobiol Sci; 2003 Sep; 2(9):921-5. PubMed ID: 14560809 [TBL] [Abstract][Full Text] [Related]
8. Spontaneous transformation of polyelectrolyte-stabilized silver nanoprisms by interaction with thiocyanate. Knauer A; Visaveliya N; Koehler JM J Colloid Interface Sci; 2013 Mar; 394():78-84. PubMed ID: 23245631 [TBL] [Abstract][Full Text] [Related]
9. Mathematical modeling of the transport and dissolution of citrate-stabilized silver nanoparticles in porous media. Taghavy A; Mittelman A; Wang Y; Pennell KD; Abriola LM Environ Sci Technol; 2013 Aug; 47(15):8499-507. PubMed ID: 23819811 [TBL] [Abstract][Full Text] [Related]
10. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Gondikas AP; Morris A; Reinsch BC; Marinakos SM; Lowry GV; Hsu-Kim H Environ Sci Technol; 2012 Jul; 46(13):7037-45. PubMed ID: 22448900 [TBL] [Abstract][Full Text] [Related]
11. Genotoxicity of polyvinylpyrrolidone-coated silver nanoparticles in BEAS 2B cells. Nymark P; Catalán J; Suhonen S; Järventaus H; Birkedal R; Clausen PA; Jensen KA; Vippola M; Savolainen K; Norppa H Toxicology; 2013 Nov; 313(1):38-48. PubMed ID: 23142790 [TBL] [Abstract][Full Text] [Related]
12. Investigating oxidative stress and inflammatory responses elicited by silver nanoparticles using high-throughput reporter genes in HepG2 cells: effect of size, surface coating, and intracellular uptake. Prasad RY; McGee JK; Killius MG; Suarez DA; Blackman CF; DeMarini DM; Simmons SO Toxicol In Vitro; 2013 Sep; 27(6):2013-21. PubMed ID: 23872425 [TBL] [Abstract][Full Text] [Related]
13. Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells: implication for cytotoxicity. Jiang X; Miclăuş T; Wang L; Foldbjerg R; Sutherland DS; Autrup H; Chen C; Beer C Nanotoxicology; 2015 Mar; 9(2):181-9. PubMed ID: 24738617 [TBL] [Abstract][Full Text] [Related]
14. Light-driven transformation processes of anisotropic silver nanoparticles. Lee GP; Shi Y; Lavoie E; Daeneke T; Reineck P; Cappel UB; Huang DM; Bach U ACS Nano; 2013 Jul; 7(7):5911-21. PubMed ID: 23730850 [TBL] [Abstract][Full Text] [Related]
16. Detection of silver nanoparticles in cells by flow cytometry using light scatter and far-red fluorescence. Zucker RM; Daniel KM; Massaro EJ; Karafas SJ; Degn LL; Boyes WK Cytometry A; 2013 Oct; 83(10):962-72. PubMed ID: 23943267 [TBL] [Abstract][Full Text] [Related]
17. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Tejamaya M; Römer I; Merrifield RC; Lead JR Environ Sci Technol; 2012 Jul; 46(13):7011-7. PubMed ID: 22432856 [TBL] [Abstract][Full Text] [Related]
18. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S. Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296 [TBL] [Abstract][Full Text] [Related]
19. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments. Ahlberg S; Antonopulos A; Diendorf J; Dringen R; Epple M; Flöck R; Goedecke W; Graf C; Haberl N; Helmlinger J; Herzog F; Heuer F; Hirn S; Johannes C; Kittler S; Köller M; Korn K; Kreyling WG; Krombach F; Lademann J; Loza K; Luther EM; Malissek M; Meinke MC; Nordmeyer D; Pailliart A; Raabe J; Rancan F; Rothen-Rutishauser B; Rühl E; Schleh C; Seibel A; Sengstock C; Treuel L; Vogt A; Weber K; Zellner R Beilstein J Nanotechnol; 2014; 5():1944-65. PubMed ID: 25383306 [TBL] [Abstract][Full Text] [Related]