These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 29273005)
1. CSmetaPred: a consensus method for prediction of catalytic residues. Choudhary P; Kumar S; Bachhawat AK; Pandit SB BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005 [TBL] [Abstract][Full Text] [Related]
2. Accurate sequence-based prediction of catalytic residues. Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of features for catalytic residue prediction in novel folds. Youn E; Peters B; Radivojac P; Mooney SD Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479 [TBL] [Abstract][Full Text] [Related]
4. An improved prediction of catalytic residues in enzyme structures. Tang YR; Sheng ZY; Chen YZ; Zhang Z Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176 [TBL] [Abstract][Full Text] [Related]
5. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information. Pai PP; Ranjani SS; Mondal S PLoS One; 2015; 10(8):e0135122. PubMed ID: 26261982 [TBL] [Abstract][Full Text] [Related]
6. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method. Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412 [TBL] [Abstract][Full Text] [Related]
7. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. Petrova NV; Wu CH BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052 [TBL] [Abstract][Full Text] [Related]
8. Rapid catalytic template searching as an enzyme function prediction procedure. Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414 [TBL] [Abstract][Full Text] [Related]
9. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function. Žváček C; Friedrichs G; Heizinger L; Merkl R BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500 [TBL] [Abstract][Full Text] [Related]
10. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1). Xiao X; Hui MJ; Liu Z; Qiu WR J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845 [TBL] [Abstract][Full Text] [Related]
11. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments. Zheng C; Kurgan L BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492 [TBL] [Abstract][Full Text] [Related]
12. Predicting and annotating catalytic residues: an information theoretic approach. Sterner B; Singh R; Berger B J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954 [TBL] [Abstract][Full Text] [Related]
13. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density. Chien YT; Huang SW PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141 [TBL] [Abstract][Full Text] [Related]
14. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method. Li Y; Rata I; Chiu SW; Jakobsson E BMC Struct Biol; 2010 Jul; 10():22. PubMed ID: 20642859 [TBL] [Abstract][Full Text] [Related]
15. EXIA2: web server of accurate and rapid protein catalytic residue prediction. Lu CH; Yu CS; Chien YT; Huang SW Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274 [TBL] [Abstract][Full Text] [Related]
16. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator. Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812 [TBL] [Abstract][Full Text] [Related]
17. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy. Kumar N; Mohanty D Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500 [TBL] [Abstract][Full Text] [Related]
18. Uncertainty analysis in protein disorder prediction. Ghalwash MF; Dunker AK; Obradović Z Mol Biosyst; 2012 Jan; 8(1):381-91. PubMed ID: 22101336 [TBL] [Abstract][Full Text] [Related]
19. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins. Zheng C; Wang M; Takemoto K; Akutsu T; Zhang Z; Song J PLoS One; 2012; 7(11):e49716. PubMed ID: 23166753 [TBL] [Abstract][Full Text] [Related]
20. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework. Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]