BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 29273005)

  • 1. CSmetaPred: a consensus method for prediction of catalytic residues.
    Choudhary P; Kumar S; Bachhawat AK; Pandit SB
    BMC Bioinformatics; 2017 Dec; 18(1):583. PubMed ID: 29273005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate sequence-based prediction of catalytic residues.
    Zhang T; Zhang H; Chen K; Shen S; Ruan J; Kurgan L
    Bioinformatics; 2008 Oct; 24(20):2329-38. PubMed ID: 18710875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of features for catalytic residue prediction in novel folds.
    Youn E; Peters B; Radivojac P; Mooney SD
    Protein Sci; 2007 Feb; 16(2):216-26. PubMed ID: 17189479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved prediction of catalytic residues in enzyme structures.
    Tang YR; Sheng ZY; Chen YZ; Zhang Z
    Protein Eng Des Sel; 2008 May; 21(5):295-302. PubMed ID: 18287176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PINGU: PredIction of eNzyme catalytic residues usinG seqUence information.
    Pai PP; Ranjani SS; Mondal S
    PLoS One; 2015; 10(8):e0135122. PubMed ID: 26261982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of an epitope prediction tool for swine (PigMatrix) based on the pocket profile method.
    Gutiérrez AH; Martin WD; Bailey-Kellogg C; Terry F; Moise L; De Groot AS
    BMC Bioinformatics; 2015 Sep; 16():290. PubMed ID: 26370412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties.
    Petrova NV; Wu CH
    BMC Bioinformatics; 2006 Jun; 7():312. PubMed ID: 16790052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid catalytic template searching as an enzyme function prediction procedure.
    Nilmeier JP; Kirshner DA; Wong SE; Lightstone FC
    PLoS One; 2013; 8(5):e62535. PubMed ID: 23675414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of catalytic residue 3D ensembles for the prediction of enzyme function.
    Žváček C; Friedrichs G; Heizinger L; Merkl R
    BMC Bioinformatics; 2015 Nov; 16():359. PubMed ID: 26538500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iCataly-PseAAC: Identification of Enzymes Catalytic Sites Using Sequence Evolution Information with Grey Model GM (2,1).
    Xiao X; Hui MJ; Liu Z; Qiu WR
    J Membr Biol; 2015 Dec; 248(6):1033-41. PubMed ID: 26077845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting and annotating catalytic residues: an information theoretic approach.
    Sterner B; Singh R; Berger B
    J Comput Biol; 2007 Oct; 14(8):1058-73. PubMed ID: 17887954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate prediction of protein catalytic residues by side chain orientation and residue contact density.
    Chien YT; Huang SW
    PLoS One; 2012; 7(10):e47951. PubMed ID: 23110141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving predicted protein loop structure ranking using a Pareto-optimality consensus method.
    Li Y; Rata I; Chiu SW; Jakobsson E
    BMC Struct Biol; 2010 Jul; 10():22. PubMed ID: 20642859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EXIA2: web server of accurate and rapid protein catalytic residue prediction.
    Lu CH; Yu CS; Chien YT; Huang SW
    Biomed Res Int; 2014; 2014():807839. PubMed ID: 25295274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. COUSCOus: improved protein contact prediction using an empirical Bayes covariance estimator.
    Rawi R; Mall R; Kunji K; El Anbari M; Aupetit M; Ullah E; Bensmail H
    BMC Bioinformatics; 2016 Dec; 17(1):533. PubMed ID: 27978812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based identification of MHC binding peptides: Benchmarking of prediction accuracy.
    Kumar N; Mohanty D
    Mol Biosyst; 2010 Dec; 6(12):2508-20. PubMed ID: 20953500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty analysis in protein disorder prediction.
    Ghalwash MF; Dunker AK; Obradović Z
    Mol Biosyst; 2012 Jan; 8(1):381-91. PubMed ID: 22101336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An integrative computational framework based on a two-step random forest algorithm improves prediction of zinc-binding sites in proteins.
    Zheng C; Wang M; Takemoto K; Akutsu T; Zhang Z; Song J
    PLoS One; 2012; 7(11):e49716. PubMed ID: 23166753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PREvaIL, an integrative approach for inferring catalytic residues using sequence, structural, and network features in a machine-learning framework.
    Song J; Li F; Takemoto K; Haffari G; Akutsu T; Chou KC; Webb GI
    J Theor Biol; 2018 Apr; 443():125-137. PubMed ID: 29408627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.