BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

430 related articles for article (PubMed ID: 29273412)

  • 1. Versatility of microglial bioenergetic machinery under starving conditions.
    Nagy AM; Fekete R; Horvath G; Koncsos G; Kriston C; Sebestyen A; Giricz Z; Kornyei Z; Madarasz E; Tretter L
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):201-214. PubMed ID: 29273412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rubella Viruses Shift Cellular Bioenergetics to a More Oxidative and Glycolytic Phenotype with a Strain-Specific Requirement for Glutamine.
    Bilz NC; Jahn K; Lorenz M; Lüdtke A; Hübschen JM; Geyer H; Mankertz A; Hübner D; Liebert UG; Claus C
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29950419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis.
    Strigun A; Wahrheit J; Niklas J; Heinzle E; Noor F
    Toxicol Sci; 2012 Feb; 125(2):595-606. PubMed ID: 22048646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rates of utilization and fates of glucose, glutamine, pyruvate, fatty acids and ketone bodies by mouse macrophages.
    Newsholme P; Gordon S; Newsholme EA
    Biochem J; 1987 Mar; 242(3):631-6. PubMed ID: 3593269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy metabolism in cultured human fibroblasts during aging in vitro.
    Goldstein S; Ballantyne SR; Robson AL; Moerman EJ
    J Cell Physiol; 1982 Sep; 112(3):419-24. PubMed ID: 6127343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substrate utilization for lactate and energy production by heat-shocked L929 cells.
    Lanks KW; Hitti IF; Chin NW
    J Cell Physiol; 1986 Jun; 127(3):451-6. PubMed ID: 3086328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bioenergetic model of gossypol action: effects of gossypol on adult rat spermatogenic cells.
    Reyes J; Borriero L; Benos DJ
    Am J Physiol; 1988 Apr; 254(4 Pt 1):C564-70. PubMed ID: 3354654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes.
    Jády AG; Nagy ÁM; Kőhidi T; Ferenczi S; Tretter L; Madarász E
    Stem Cells Dev; 2016 Jul; 25(13):995-1005. PubMed ID: 27116891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contributions of glycolysis and oxidative phosphorylation to adenosine 5'-triphosphate production in AS-30D hepatoma cells.
    Nakashima RA; Paggi MG; Pedersen PL
    Cancer Res; 1984 Dec; 44(12 Pt 1):5702-6. PubMed ID: 6498833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glucose and glutamine metabolism of a murine B-lymphocyte hybridoma grown in batch culture.
    Fitzpatrick L; Jenkins HA; Butler M
    Appl Biochem Biotechnol; 1993 Nov; 43(2):93-116. PubMed ID: 8267405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose pathways adaptation supports acquisition of activated microglia phenotype.
    Gimeno-Bayón J; López-López A; Rodríguez MJ; Mahy N
    J Neurosci Res; 2014 Jun; 92(6):723-31. PubMed ID: 24510633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of glucose and insulin on HepG2-C3A cell metabolism.
    Iyer VV; Yang H; Ierapetritou MG; Roth CM
    Biotechnol Bioeng; 2010 Oct; 107(2):347-56. PubMed ID: 20506178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-toxic engineered carbon nanodiamond concentrations induce oxidative/nitrosative stress, imbalance of energy metabolism, and mitochondrial dysfunction in microglial and alveolar basal epithelial cells.
    Fresta CG; Chakraborty A; Wijesinghe MB; Amorini AM; Lazzarino G; Lazzarino G; Tavazzi B; Lunte SM; Caraci F; Dhar P; Caruso G
    Cell Death Dis; 2018 Feb; 9(2):245. PubMed ID: 29445138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy metabolism in astrocytes: high rate of oxidative metabolism and spatiotemporal dependence on glycolysis/glycogenolysis.
    Hertz L; Peng L; Dienel GA
    J Cereb Blood Flow Metab; 2007 Feb; 27(2):219-49. PubMed ID: 16835632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitric oxide donor, isosorbide dinitrate, on energy metabolism of rat reticulocytes.
    Maletić SD; Dragicević LM; Zikić RV; Stajn AS; Kostić MM
    Physiol Res; 1999; 48(6):417-27. PubMed ID: 10783906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microglial metabolic flexibility supports immune surveillance of the brain parenchyma.
    Bernier LP; York EM; Kamyabi A; Choi HB; Weilinger NL; MacVicar BA
    Nat Commun; 2020 Mar; 11(1):1559. PubMed ID: 32214088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between cellular energy production and rates of glucose utilization by lung cells.
    Pérez-Díaz J; Martín-Requero A; Parrilla R; Ayuso-Parrilla MS
    Pflugers Arch; 1977 Oct; 371(1-2):19-24. PubMed ID: 563572
    [No Abstract]   [Full Text] [Related]  

  • 19. Energy metabolism of cultured TM4 cells and the action of gossypol.
    Reyes J; Borriero L; Tanphaichitr N; Bellve AR; Benos DJ
    Biol Reprod; 1986 Jun; 34(5):809-19. PubMed ID: 3730478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic metabolism in cultured cells of the nervous system. II. Regulation of pyruvate and lactate metabolism in the C-6 glioma cell line.
    Schwartz JP; Lust WD; Lauderdale VR; Passonneau JV
    Mol Cell Biochem; 1975 Nov; 9(2):67-72. PubMed ID: 1196301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.