BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1373 related articles for article (PubMed ID: 29273451)

  • 1. Loss of Pten and Activation of Kras Synergistically Induce Formation of Intraductal Papillary Mucinous Neoplasia From Pancreatic Ductal Cells in Mice.
    Kopp JL; Dubois CL; Schaeffer DF; Samani A; Taghizadeh F; Cowan RW; Rhim AD; Stiles BL; Valasek M; Sander M
    Gastroenterology; 2018 Apr; 154(5):1509-1523.e5. PubMed ID: 29273451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of Activin Receptor Type 1B Accelerates Development of Intraductal Papillary Mucinous Neoplasms in Mice With Activated KRAS.
    Qiu W; Tang SM; Lee S; Turk AT; Sireci AN; Qiu A; Rose C; Xie C; Kitajewski J; Wen HJ; Crawford HC; Sims PA; Hruban RH; Remotti HE; Su GH
    Gastroenterology; 2016 Jan; 150(1):218-228.e12. PubMed ID: 26408346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of Trefoil Factor 2 From Pancreatic Duct Glands Promotes Formation of Intraductal Papillary Mucinous Neoplasms in Mice.
    Yamaguchi J; Mino-Kenudson M; Liss AS; Chowdhury S; Wang TC; Fernández-Del Castillo C; Lillemoe KD; Warshaw AL; Thayer SP
    Gastroenterology; 2016 Dec; 151(6):1232-1244.e10. PubMed ID: 27523981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ARID1A Maintains Differentiation of Pancreatic Ductal Cells and Inhibits Development of Pancreatic Ductal Adenocarcinoma in Mice.
    Kimura Y; Fukuda A; Ogawa S; Maruno T; Takada Y; Tsuda M; Hiramatsu Y; Araki O; Nagao M; Yoshikawa T; Ikuta K; Yoshioka T; Wang Z; Akiyama H; Wright CV; Takaori K; Uemoto S; Chiba T; Seno H
    Gastroenterology; 2018 Jul; 155(1):194-209.e2. PubMed ID: 29604291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intraductal papillary mucinous neoplasms of the pancreas with distinct pancreatic ductal adenocarcinomas are frequently of gastric subtype.
    Ideno N; Ohtsuka T; Kono H; Fujiwara K; Oda Y; Aishima S; Ito T; Ishigami K; Tokunaga S; Ohuchida K; Takahata S; Nakamura M; Mizumoto K; Tanaka M
    Ann Surg; 2013 Jul; 258(1):141-51. PubMed ID: 23532108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GNAS
    Ideno N; Yamaguchi H; Ghosh B; Gupta S; Okumura T; Steffen DJ; Fisher CG; Wood LD; Singhi AD; Nakamura M; Gutkind JS; Maitra A
    Gastroenterology; 2018 Nov; 155(5):1593-1607.e12. PubMed ID: 30142336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Krüppel-like Factor 5, Increased in Pancreatic Ductal Adenocarcinoma, Promotes Proliferation, Acinar-to-Ductal Metaplasia, Pancreatic Intraepithelial Neoplasia, and Tumor Growth in Mice.
    He P; Yang JW; Yang VW; Bialkowska AB
    Gastroenterology; 2018 Apr; 154(5):1494-1508.e13. PubMed ID: 29248441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell of origin affects tumour development and phenotype in pancreatic ductal adenocarcinoma.
    Lee AYL; Dubois CL; Sarai K; Zarei S; Schaeffer DF; Sander M; Kopp JL
    Gut; 2019 Mar; 68(3):487-498. PubMed ID: 29363536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of Somatostatin Receptor Subtype 2 Promotes Growth of KRAS-Induced Pancreatic Tumors in Mice by Activating PI3K Signaling and Overexpression of CXCL16.
    Chalabi-Dchar M; Cassant-Sourdy S; Duluc C; Fanjul M; Lulka H; Samain R; Roche C; Breibach F; Delisle MB; Poupot M; Dufresne M; Shimaoka T; Yonehara S; Mathonnet M; Pyronnet S; Bousquet C
    Gastroenterology; 2015 Jun; 148(7):1452-65. PubMed ID: 25683115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. mTORC1 and mTORC2 Converge on the Arp2/3 Complex to Promote Kras
    Zhao Y; Schoeps B; Yao D; Zhang Z; Schuck K; Tissen V; Jäger C; Schlitter AM; van der Kammen R; Ludwig C; D'Haese JG; Raulefs S; Maeritz N; Shen S; Zou X; Krüger A; Kleeff J; Michalski CW; Friess H; Innocenti M; Kong B
    Gastroenterology; 2021 Apr; 160(5):1755-1770.e17. PubMed ID: 33388318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SETDB1 Inhibits p53-Mediated Apoptosis and Is Required for Formation of Pancreatic Ductal Adenocarcinomas in Mice.
    Ogawa S; Fukuda A; Matsumoto Y; Hanyu Y; Sono M; Fukunaga Y; Masuda T; Araki O; Nagao M; Yoshikawa T; Goto N; Hiramatsu Y; Tsuda M; Maruno T; Nakanishi Y; Hussein MS; Tsuruyama T; Takaori K; Uemoto S; Seno H
    Gastroenterology; 2020 Aug; 159(2):682-696.e13. PubMed ID: 32360551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oncogenic KRAS Reduces Expression of FGF21 in Acinar Cells to Promote Pancreatic Tumorigenesis in Mice on a High-Fat Diet.
    Luo Y; Yang Y; Liu M; Wang D; Wang F; Bi Y; Ji J; Li S; Liu Y; Chen R; Huang H; Wang X; Swidnicka-Siergiejko AK; Janowitz T; Beyaz S; Wang G; Xu S; Bialkowska AB; Luo CK; Pin CL; Liang G; Lu X; Wu M; Shroyer KR; Wolff RA; Plunkett W; Ji B; Li Z; Li E; Li X; Yang VW; Logsdon CD; Abbruzzese JL; Lu W
    Gastroenterology; 2019 Nov; 157(5):1413-1428.e11. PubMed ID: 31352001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of clonality of multisegmental main duct intraductal papillary mucinous neoplasms of the pancreas based on GNAS mutation analysis.
    Tamura K; Ohtsuka T; Matsunaga T; Kimura H; Watanabe Y; Ideno N; Aso T; Miyazaki T; Ohuchida K; Takahata S; Ito T; Ushijima Y; Oda Y; Mizumoto K; Tanaka M
    Surgery; 2015 Feb; 157(2):277-84. PubMed ID: 25530484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Targeted next-generation sequencing of cancer genes dissects the molecular profiles of intraductal papillary neoplasms of the pancreas.
    Amato E; Molin MD; Mafficini A; Yu J; Malleo G; Rusev B; Fassan M; Antonello D; Sadakari Y; Castelli P; Zamboni G; Maitra A; Salvia R; Hruban RH; Bassi C; Capelli P; Lawlor RT; Goggins M; Scarpa A
    J Pathol; 2014 Jul; 233(3):217-27. PubMed ID: 24604757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clinical significance of GNAS mutation in intraductal papillary mucinous neoplasm of the pancreas with concomitant pancreatic ductal adenocarcinoma.
    Ideno N; Ohtsuka T; Matsunaga T; Kimura H; Watanabe Y; Tamura K; Aso T; Aishima S; Miyasaka Y; Ohuchida K; Ueda J; Takahata S; Oda Y; Mizumoto K; Tanaka M
    Pancreas; 2015 Mar; 44(2):311-20. PubMed ID: 25479586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GNAS(R201H) and Kras(G12D) cooperate to promote murine pancreatic tumorigenesis recapitulating human intraductal papillary mucinous neoplasm.
    Taki K; Ohmuraya M; Tanji E; Komatsu H; Hashimoto D; Semba K; Araki K; Kawaguchi Y; Baba H; Furukawa T
    Oncogene; 2016 May; 35(18):2407-12. PubMed ID: 26257060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term Risk of Malignancy in Branch-Duct Intraductal Papillary Mucinous Neoplasms.
    Oyama H; Tada M; Takagi K; Tateishi K; Hamada T; Nakai Y; Hakuta R; Ijichi H; Ishigaki K; Kanai S; Kogure H; Mizuno S; Saito K; Saito T; Sato T; Suzuki T; Takahara N; Morishita Y; Arita J; Hasegawa K; Tanaka M; Fukayama M; Koike K
    Gastroenterology; 2020 Jan; 158(1):226-237.e5. PubMed ID: 31473224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and manipulation of biliary metaplasia in pancreatic tumors.
    Delgiorno KE; Hall JC; Takeuchi KK; Pan FC; Halbrook CJ; Washington MK; Olive KP; Spence JR; Sipos B; Wright CV; Wells JM; Crawford HC
    Gastroenterology; 2014 Jan; 146(1):233-44.e5. PubMed ID: 23999170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concomitant pancreatic activation of Kras(G12D) and Tgfa results in cystic papillary neoplasms reminiscent of human IPMN.
    Siveke JT; Einwächter H; Sipos B; Lubeseder-Martellato C; Klöppel G; Schmid RM
    Cancer Cell; 2007 Sep; 12(3):266-79. PubMed ID: 17785207
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Collet L; Ghurburrun E; Meyers N; Assi M; Pirlot B; Leclercq IA; Couvelard A; Komuta M; Cros J; Demetter P; Lemaigre FP; Borbath I; Jacquemin P
    Gut; 2020 Apr; 69(4):704-714. PubMed ID: 31154393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 69.