BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29273778)

  • 1. Methylation-regulated decommissioning of multimeric PP2A complexes.
    Wu CG; Zheng A; Jiang L; Rowse M; Stanevich V; Chen H; Li Y; Satyshur KA; Johnson B; Gu TJ; Liu Z; Xing Y
    Nat Commun; 2017 Dec; 8(1):2272. PubMed ID: 29273778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction analysis of the heterotrimer formed by the phosphatase 2A catalytic subunit, alpha4 and the mammalian ortholog of yeast Tip41 (TIPRL).
    Smetana JH; Zanchin NI
    FEBS J; 2007 Nov; 274(22):5891-904. PubMed ID: 17944932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biogenesis of active protein phosphatase 2A holoenzymes: a tightly regulated process creating phosphatase specificity.
    Sents W; Ivanova E; Lambrecht C; Haesen D; Janssens V
    FEBS J; 2013 Jan; 280(2):644-61. PubMed ID: 22443683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal structure of the human Tip41 orthologue, TIPRL, reveals a novel fold and a binding site for the PP2Ac C-terminus.
    Scorsato V; Lima TB; Righetto GL; Zanchin NI; Brandão-Neto J; Sandy J; Pereira HD; Ferrari ÁJ; Gozzo FC; Smetana JH; Aparicio R
    Sci Rep; 2016 Aug; 6():30813. PubMed ID: 27489114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A positive role of mammalian Tip41-like protein, TIPRL, in the amino-acid dependent mTORC1-signaling pathway through interaction with PP2A.
    Nakashima A; Tanimura-Ito K; Oshiro N; Eguchi S; Miyamoto T; Momonami A; Kamada S; Yonezawa K; Kikkawa U
    FEBS Lett; 2013 Sep; 587(18):2924-9. PubMed ID: 23892082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of the scaffold subunit in facilitating protein phosphatase 2A methylation.
    Stanevich V; Zheng A; Guo F; Jiang L; Wlodarchak N; Xing Y
    PLoS One; 2014; 9(1):e86955. PubMed ID: 24466300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carboxyl-terminal methylation on holoenzyme function of the PP2A subfamily.
    Nasa I; Kettenbach AN
    Biochem Soc Trans; 2020 Oct; 48(5):2015-2027. PubMed ID: 33125487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of protein phosphatase 2A (PP2A) complexity reveals cellular functions and dephosphorylation motifs of the PP2A/B'δ holoenzyme.
    Jong CJ; Merrill RA; Wilkerson EM; Herring LE; Graves LM; Strack S
    J Biol Chem; 2020 Apr; 295(17):5654-5668. PubMed ID: 32156701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis of protein phosphatase 2A stable latency.
    Jiang L; Stanevich V; Satyshur KA; Kong M; Watkins GR; Wadzinski BE; Sengupta R; Xing Y
    Nat Commun; 2013; 4():1699. PubMed ID: 23591866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembly and structure of protein phosphatase 2A.
    Shi Y
    Sci China C Life Sci; 2009 Feb; 52(2):135-46. PubMed ID: 19277525
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Arabidopsis PHOSPHOTYROSYL PHOSPHATASE ACTIVATOR is essential for PROTEIN PHOSPHATASE 2A holoenzyme assembly and plays important roles in hormone signaling, salt stress response, and plant development.
    Chen J; Hu R; Zhu Y; Shen G; Zhang H
    Plant Physiol; 2014 Nov; 166(3):1519-34. PubMed ID: 25281708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart.
    DeGrande ST; Little SC; Nixon DJ; Wright P; Snyder J; Dun W; Murphy N; Kilic A; Higgins R; Binkley PF; Boyden PA; Carnes CA; Anderson ME; Hund TJ; Mohler PJ
    J Biol Chem; 2013 Jan; 288(2):1032-46. PubMed ID: 23204520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of PP2A, PP4, and PP6 holoenzyme assembly by carboxyl-terminal methylation.
    Lyons SP; Greiner EC; Cressey LE; Adamo ME; Kettenbach AN
    Sci Rep; 2021 Nov; 11(1):23031. PubMed ID: 34845248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of AtPTPA in Arabidopsis increases protein phosphatase 2A activity by promoting holoenzyme formation and ABA negatively affects holoenzyme formation.
    Chen J; Zhu X; Shen G; Zhang H
    Plant Signal Behav; 2015; 10(11):e1052926. PubMed ID: 26633567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition.
    Li Y; Balakrishnan VK; Rowse M; Wu CG; Bravos AP; Yadav VK; Ivarsson Y; Strack S; Novikova IV; Xing Y
    Elife; 2022 Aug; 11():. PubMed ID: 35924897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PP2A holoenzyme assembly: in cauda venenum (the sting is in the tail).
    Janssens V; Longin S; Goris J
    Trends Biochem Sci; 2008 Mar; 33(3):113-21. PubMed ID: 18291659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of subunit interactions and ternary complexes of protein phosphatase 2A in mammalian cells.
    Mo ST; Chiang SJ; Lai TY; Cheng YL; Chung CE; Kuo SC; Reece KM; Chen YC; Chang NS; Wadzinski BE; Chiang CW
    PLoS One; 2014; 9(12):e116074. PubMed ID: 25536081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of a PP2A-interacting protein that functions as a negative regulator of phosphatase activity in the ATM/ATR signaling pathway.
    McConnell JL; Gomez RJ; McCorvey LR; Law BK; Wadzinski BE
    Oncogene; 2007 Sep; 26(41):6021-30. PubMed ID: 17384681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the protein phosphatase 2A holoenzyme.
    Xu Y; Xing Y; Chen Y; Chao Y; Lin Z; Fan E; Yu JW; Strack S; Jeffrey PD; Shi Y
    Cell; 2006 Dec; 127(6):1239-51. PubMed ID: 17174897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The structural basis for tight control of PP2A methylation and function by LCMT-1.
    Stanevich V; Jiang L; Satyshur KA; Li Y; Jeffrey PD; Li Z; Menden P; Semmelhack MF; Xing Y
    Mol Cell; 2011 Feb; 41(3):331-42. PubMed ID: 21292165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.