These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 29273792)

  • 1. Timing and pacing of the Late Devonian mass extinction event regulated by eccentricity and obliquity.
    De Vleeschouwer D; Da Silva AC; Sinnesael M; Chen D; Day JE; Whalen MT; Guo Z; Claeys P
    Nat Commun; 2017 Dec; 8(1):2268. PubMed ID: 29273792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anchoring the Late Devonian mass extinction in absolute time by integrating climatic controls and radio-isotopic dating.
    Da Silva AC; Sinnesael M; Claeys P; Davies JHFL; de Winter NJ; Percival LME; Schaltegger U; De Vleeschouwer D
    Sci Rep; 2020 Jul; 10(1):12940. PubMed ID: 32737336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precisely dating the Frasnian-Famennian boundary: implications for the cause of the Late Devonian mass extinction.
    Percival LME; Davies JHFL; Schaltegger U; De Vleeschouwer D; Da Silva AC; Föllmi KB
    Sci Rep; 2018 Jun; 8(1):9578. PubMed ID: 29934550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obliquity pacing of the late Pleistocene glacial terminations.
    Huybers P; Wunsch C
    Nature; 2005 Mar; 434(7032):491-4. PubMed ID: 15791252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery.
    Fu W; Jiang DY; Montañez IP; Meyers SR; Motani R; Tintori A
    Sci Rep; 2016 Jun; 6():27793. PubMed ID: 27292969
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Significant fluctuation in the global sulfate reservoir and oceanic redox state during the Late Devonian event.
    Cai C; Xu C; Fakhraee M; Chen D; Peng Y
    PNAS Nexus; 2022 Sep; 1(4):pgac122. PubMed ID: 36714851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles.
    Rutherford S; D'Hondt S
    Nature; 2000 Nov; 408(6808):72-5. PubMed ID: 11081508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Volcanic related methylmercury poisoning as the possible driver of the end-Devonian Mass Extinction.
    Rakociński M; Marynowski L; Pisarzowska A; Bełdowski J; Siedlewicz G; Zatoń M; Perri MC; Spalletta C; Schönlaub HP
    Sci Rep; 2020 Apr; 10(1):7344. PubMed ID: 32355245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New Famennian colonial coral (Rugosa) from the Holy Cross Mountains (Poland): an example of local evolution after Frasnian-Famennian extinction.
    Berkowski B; Zapalski MK; Wrzołek T
    Naturwissenschaften; 2016 Apr; 103(3-4):33. PubMed ID: 26983709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated mass extinction in an isolated biota during Late Devonian climate changes.
    Pier JQ; Brisson SK; Beard JA; Hren MT; Bush AM
    Sci Rep; 2021 Dec; 11(1):24366. PubMed ID: 34934059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.
    Jenkyns HC
    Philos Trans A Math Phys Eng Sci; 2003 Sep; 361(1810):1885-916; discussion 1916. PubMed ID: 14558900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional consequences of Palaeozoic reef collapse.
    Bridge TCL; Baird AH; Pandolfi JM; McWilliam MJ; Zapalski MK
    Sci Rep; 2022 Jan; 12(1):1386. PubMed ID: 35082318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.
    Crampton JS; Meyers SR; Cooper RA; Sadler PM; Foote M; Harte D
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5686-5691. PubMed ID: 29760070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orbital pacing of carbon fluxes by a ∼9-My eccentricity cycle during the Mesozoic.
    Martinez M; Dera G
    Proc Natl Acad Sci U S A; 2015 Oct; 112(41):12604-9. PubMed ID: 26417080
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch.
    Liu Z; Herbert TD
    Nature; 2004 Feb; 427(6976):720-3. PubMed ID: 14973481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Body-size increase in crinoids following the end-Devonian mass extinction.
    Brom KR; Salamon MA; Gorzelak P
    Sci Rep; 2018 Jun; 8(1):9606. PubMed ID: 29942036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Orbitally Forced Hyperstratification of the Oligocene South Atlantic Ocean.
    Liebrand D; Raffi I; Fraguas Á; Laxenaire R; Bosmans JHC; Hilgen FJ; Wilson PA; Batenburg SJ; Beddow HM; Bohaty SM; Bown PR; Crocker AJ; Huck CE; Lourens LJ; Sabia L
    Paleoceanogr Paleoclimatol; 2018 May; 33(5):511-529. PubMed ID: 31058259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Astronomical pacing of late Palaeocene to early Eocene global warming events.
    Lourens LJ; Sluijs A; Kroon D; Zachos JC; Thomas E; Röhl U; Bowles J; Raffi I
    Nature; 2005 Jun; 435(7045):1083-7. PubMed ID: 15944716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-calibrated Milankovitch cycles for the late Permian.
    Wu H; Zhang S; Hinnov LA; Jiang G; Feng Q; Li H; Yang T
    Nat Commun; 2013; 4():2452. PubMed ID: 24030138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Astronomical pacing of the global silica cycle recorded in Mesozoic bedded cherts.
    Ikeda M; Tada R; Ozaki K
    Nat Commun; 2017 Jun; 8():15532. PubMed ID: 28589958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.