BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29274217)

  • 1. Evaluation of inhibitory effect of redox-active antimalarial drug against Babesia microti in mice.
    Szymczak J; Kozłowska J; Doligalska M
    Ann Parasitol; 2017; 63(3):223–227. PubMed ID: 29274217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clofazimine, a Promising Drug for the Treatment of Babesia microti Infection in Severely Immunocompromised Hosts.
    Tuvshintulga B; Vannier E; Tayebwa DS; Gantuya S; Sivakumar T; Guswanto A; Krause PJ; Yokoyama N; Igarashi I
    J Infect Dis; 2020 Aug; 222(6):1027-1036. PubMed ID: 32310272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elimination of
    Skariah S; Arnaboldi P; Dattwyler RJ; Sultan AA; Gaylets C; Walwyn O; Mulhall H; Wu X; Dargham SR; Mordue DG
    J Immunol; 2017 Jul; 199(2):633-642. PubMed ID: 28607116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficacy of the Antimalarial MMV390048 against
    Ji S; Galon EM; Rizk MA; Yi Y; Zafar I; Li H; Ma Z; Iguchi A; Asada M; Liu M; Xuan X
    Antimicrob Agents Chemother; 2022 Sep; 66(9):e0057422. PubMed ID: 35924942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emergence of resistance to azithromycin-atovaquone in immunocompromised patients with Babesia microti infection.
    Wormser GP; Prasad A; Neuhaus E; Joshi S; Nowakowski J; Nelson J; Mittleman A; Aguero-Rosenfeld M; Topal J; Krause PJ
    Clin Infect Dis; 2010 Feb; 50(3):381-6. PubMed ID: 20047477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigating the mode of action of the redox-active antimalarial drug plasmodione using the yeast model.
    Mounkoro P; Michel T; Blandin S; Golinelli-Cohen MP; Davioud-Charvet E; Meunier B
    Free Radic Biol Med; 2019 Sep; 141():269-278. PubMed ID: 31238126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effects of 19 antiprotozoal drugs and antibiotics on Babesia microti infection in BALB/c mice.
    Yao JM; Zhang HB; Liu CS; Tao Y; Yin M
    J Infect Dev Ctries; 2015 Sep; 9(9):1004-10. PubMed ID: 26409742
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-Related Differential Stimulation of Immune Response by
    Djokic V; Primus S; Akoolo L; Chakraborti M; Parveen N
    Front Immunol; 2018; 9():2891. PubMed ID: 30619263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Could the Drug Tafenoquine Revolutionize Treatment of Babesia microti Infection?
    Mordue DG; Wormser GP
    J Infect Dis; 2019 Jul; 220(3):442-447. PubMed ID: 31099380
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Efstratiou A; Galon EMS; Wang G; Umeda K; Kondoh D; Terkawi MA; Kume A; Liu M; Ringo AE; Guo H; Gao Y; Lee SH; Li J; Moumouni PFA; Nishikawa Y; Suzuki H; Igarashi I; Xuan X
    Front Cell Infect Microbiol; 2020; 10():193. PubMed ID: 32411624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of Babesia microti infection on the initiation and course of pregnancy in BALB/c mice.
    Tołkacz K; Rodo A; Wdowiarska A; Bajer A; Bednarska M
    Parasit Vectors; 2021 Mar; 14(1):132. PubMed ID: 33653384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HIV protease inhibitors block parasite signal peptide peptidases and prevent growth of Babesia microti parasites in erythrocytes.
    Schwake C; Baldwin MR; Bachovchin W; Hegde S; Schiemer J; Okure C; Levin AE; Vannier E; Hanada T; Chishti AH
    Biochem Biophys Res Commun; 2019 Sep; 517(1):125-131. PubMed ID: 31311649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Screening for biomarkers reflecting the progression of Babesia microti infection.
    Xu B; Liu XF; Cai YC; Huang JL; Zhang RX; Chen JH; Cheng XJ; Zhou X; Xu XN; Zhou Y; Zhang T; Chen SB; Li J; Wu QF; Sun CS; Fu YF; Chen JX; Zhou XN; Hu W
    Parasit Vectors; 2018 Jul; 11(1):379. PubMed ID: 29970143
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Rizk MA; El-Sayed SAE; Igarashi I
    Pathog Glob Health; 2023 May; 117(3):315-321. PubMed ID: 36172647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo antibabesial activity and bioinformatic analysis of compounds derived from the Medicines for Malaria Venture box against Babesia microti.
    Rizk MA; El-Sayed SAE; Eltaysh R; Igarashi I
    Mol Biochem Parasitol; 2022 Jan; 247():111444. PubMed ID: 34933065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Redox Cycler Plasmodione Is a Fast-Acting Antimalarial Lead Compound with Pronounced Activity against Sexual and Early Asexual Blood-Stage Parasites.
    Ehrhardt K; Deregnaucourt C; Goetz AA; Tzanova T; Gallo V; Arese P; Pradines B; Adjalley SH; Bagrel D; Blandin S; Lanzer M; Davioud-Charvet E
    Antimicrob Agents Chemother; 2016 Sep; 60(9):5146-58. PubMed ID: 27297478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects on bovine babesial infection by iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2-methylpyridin-4-one (CM1), and antimalarial drugs.
    Koonyosying P; Srichairatanakool S; Tiwananthagorn S; Sthitmatee N
    Vet Parasitol; 2023 Dec; 324():110055. PubMed ID: 37931475
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ellagic acid microspheres restrict the growth of Babesia and Theileria in vitro and Babesia microti in vivo.
    Beshbishy AM; Batiha GE; Yokoyama N; Igarashi I
    Parasit Vectors; 2019 May; 12(1):269. PubMed ID: 31138282
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Wang H; Wang Y; Huang J; Xu B; Chen J; Dai J; Zhou X
    Front Immunol; 2020; 11():1437. PubMed ID: 32733477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of ABO and RhD blood types on Babesia microti infection.
    Jajosky RP; O'Bryan J; Spichler-Moffarah A; Jajosky PG; Krause PJ; Tonnetti L
    PLoS Negl Trop Dis; 2023 Jan; 17(1):e0011060. PubMed ID: 36696414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.