BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29274252)

  • 1. Development of hafnium metal and titanium-hafnium alloys having apatite-forming ability by chemical surface modification.
    Miyazaki T; Sueoka M; Shirosaki Y; Shinozaki N; Shiraishi T
    J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2519-2523. PubMed ID: 29274252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compositional dependence of the apatite formation ability of Ti-Zr alloys designed for hard tissue reconstruction.
    Miyazaki T; Hosokawa T; Yokoyama K; Shiraishi T
    J Mater Sci Mater Med; 2020 Nov; 31(11):110. PubMed ID: 33165675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of apatite formation on Ti-50Zr alloy in simulated body environment.
    Miyazaki T; Ota S; Nakamura J
    Dent Mater J; 2023 May; 42(3):390-395. PubMed ID: 36858626
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of water treatment on the apatite-forming ability of NaOH-treated titanium metal.
    Uchida M; Kim HM; Kokubo T; Fujibayashi S; Nakamura T
    J Biomed Mater Res; 2002; 63(5):522-30. PubMed ID: 12209896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different post-treatments on the bioactivity of alkali-treated Ti-5Si alloy.
    Hsu HC; Wu SC; Hsu SK; Liao YH; Ho WF
    Biomed Mater Eng; 2017; 28(5):503-514. PubMed ID: 28854492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of surface roughness of Ti, Zr, and TiZr on apatite precipitation from simulated body fluid.
    Chen X; Nouri A; Li Y; Lin J; Hodgson PD; Wen C
    Biotechnol Bioeng; 2008 Oct; 101(2):378-87. PubMed ID: 18454499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antibacterial and bioactive calcium titanate layers formed on Ti metal and its alloys.
    Kizuki T; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2014 Jul; 25(7):1737-46. PubMed ID: 24682896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface potential change in bioactive titanium metal during the process of apatite formation in simulated body fluid.
    Kim HM; Himeno T; Kawashita M; Lee JH; Kokubo T; Nakamura T
    J Biomed Mater Res A; 2003 Dec; 67(4):1305-9. PubMed ID: 14624517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Ca contamination on apatite formation in a Ti metal subjected to NaOH and heat treatments.
    Kizuki T; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Mater Sci Mater Med; 2013 Mar; 24(3):635-44. PubMed ID: 23250580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of bioactive Ti-15Zr-4Nb-4Ta alloy from HCl and heat treatments after an NaOH treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Biomed Mater Res A; 2011 May; 97(2):135-44. PubMed ID: 21370443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of metallographic structure and machining process on the apatite-forming ability of sodium hydroxide- and heat-treated titanium.
    Miyazaki T; Sasaki T; Shirosaki Y; Yokoyama K; Kawashita M
    Biomed Mater Eng; 2018; 29(1):109-118. PubMed ID: 29254077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of bioactive Ti and its alloys via simple chemical surface treatment.
    Kim HM; Miyaji F; Kokubo T; Nakamura T
    J Biomed Mater Res; 1996 Nov; 32(3):409-17. PubMed ID: 8897146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel bioactive materials developed by simulated body fluid evaluation: Surface-modified Ti metal and its alloys.
    Kokubo T; Yamaguchi S
    Acta Biomater; 2016 Oct; 44():16-30. PubMed ID: 27521496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apatite-forming ability of Ti-15Zr-4Nb-4Ta alloy induced by calcium solution treatment.
    Yamaguchi S; Takadama H; Matsushita T; Nakamura T; Kokubo T
    J Mater Sci Mater Med; 2010 Feb; 21(2):439-44. PubMed ID: 19842018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heat treatments on apatite-forming ability of NaOH- and HCl-treated titanium metal.
    Pattanayak DK; Yamaguchi S; Matsushita T; Kokubo T
    J Mater Sci Mater Med; 2011 Feb; 22(2):273-8. PubMed ID: 21188481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive titanate layers formed on titanium and its alloys by simple chemical and heat treatments.
    Kokubo T; Yamaguchi S
    Open Biomed Eng J; 2015; 9():29-41. PubMed ID: 25893014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a bioactive graded surface structure on Ti-15Mo-5Zr-3Al alloy by chemical treatment.
    Kim HM; Takadama H; Kokubo T; Nishiguchi S; Nakamura T
    Biomaterials; 2000 Feb; 21(4):353-8. PubMed ID: 10656316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid.
    Takadama H; Kim HM; Kokubo T; Nakamura T
    J Biomed Mater Res; 2001 Dec; 57(3):441-8. PubMed ID: 11523039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of apatite formation on pure titanium treated with alkaline solution.
    Wang CX; Zhou X; Wang M
    Biomed Mater Eng; 2004; 14(1):5-11. PubMed ID: 14757948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro apatite formation on nano-crystalline titania layer aligned parallel to Ti6Al4V alloy substrates with sub-millimeter gap.
    Hayakawa S; Matsumoto Y; Uetsuki K; Shirosaki Y; Osaka A
    J Mater Sci Mater Med; 2015 Jun; 26(6):190. PubMed ID: 25989935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.