These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 29274342)
1. The modulatory role of pre-SMA in speed-accuracy tradeoff: A bi-directional TMS study. Berkay D; Eser HY; Sack AT; Çakmak YÖ; Balcı F Neuropsychologia; 2018 Jan; 109():255-261. PubMed ID: 29274342 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of Pre-Supplementary Motor Area by Continuous Theta Burst Stimulation Leads to More Cautious Decision-making and More Efficient Sensory Evidence Integration. Tosun T; Berkay D; Sack AT; Çakmak YÖ; Balcı F J Cogn Neurosci; 2017 Aug; 29(8):1433-1444. PubMed ID: 28387589 [TBL] [Abstract][Full Text] [Related]
3. Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex and the Pre-SMA Alter Drift Rate and Response Thresholds Respectively During Perceptual Decision-Making. Georgiev D; Rocchi L; Tocco P; Speekenbrink M; Rothwell JC; Jahanshahi M Brain Stimul; 2016; 9(4):601-8. PubMed ID: 27157058 [TBL] [Abstract][Full Text] [Related]
4. Transcranial Direct Current Stimulation Does Not Influence the Speed-Accuracy Tradeoff in Perceptual Decision-making: Evidence from Three Independent Studies. de Hollander G; Labruna L; Sellaro R; Trutti A; Colzato LS; Ratcliff R; Ivry RB; Forstmann BU J Cogn Neurosci; 2016 Sep; 28(9):1283-94. PubMed ID: 27054398 [TBL] [Abstract][Full Text] [Related]
5. Neurodynamic Evidence Supports a Forced-Excursion Model of Decision-Making under Speed/Accuracy Instructions. Spieser L; Kohl C; Forster B; Bestmann S; Yarrow K eNeuro; 2018; 5(3):. PubMed ID: 29951578 [TBL] [Abstract][Full Text] [Related]
6. Pre-supplementary motor area strengthens reward sensitivity in intertemporal choice. Vural G; Katruss N; Soutschek A Neuroimage; 2024 Oct; 299():120838. PubMed ID: 39241899 [TBL] [Abstract][Full Text] [Related]
7. Theta-burst transcranial magnetic stimulation over the supplementary motor area decreases variability of temporal estimates. Dusek P; Jech R; Havrankova P; Vymazal J; Wackermann J Neuro Endocrinol Lett; 2011; 32(4):481-6. PubMed ID: 21876488 [TBL] [Abstract][Full Text] [Related]
8. Different effects of dopaminergic medication on perceptual decision-making in Parkinson's disease as a function of task difficulty and speed-accuracy instructions. Huang YT; Georgiev D; Foltynie T; Limousin P; Speekenbrink M; Jahanshahi M Neuropsychologia; 2015 Aug; 75():577-87. PubMed ID: 26184442 [TBL] [Abstract][Full Text] [Related]
9. Roles of the pre-SMA and rIFG in conditional stopping revealed by transcranial magnetic stimulation. Lee HW; Lu MS; Chen CY; Muggleton NG; Hsu TY; Juan CH Behav Brain Res; 2016 Jan; 296():459-467. PubMed ID: 26304720 [TBL] [Abstract][Full Text] [Related]
10. Trial-to-trial adjustments of speed-accuracy trade-offs in premotor and primary motor cortex. Thura D; Guberman G; Cisek P J Neurophysiol; 2017 Feb; 117(2):665-683. PubMed ID: 27852735 [TBL] [Abstract][Full Text] [Related]
11. Neural characterization of the speed-accuracy tradeoff in a perceptual decision-making task. Wenzlaff H; Bauer M; Maess B; Heekeren HR J Neurosci; 2011 Jan; 31(4):1254-66. PubMed ID: 21273410 [TBL] [Abstract][Full Text] [Related]
12. Striatum and pre-SMA facilitate decision-making under time pressure. Forstmann BU; Dutilh G; Brown S; Neumann J; von Cramon DY; Ridderinkhof KR; Wagenmakers EJ Proc Natl Acad Sci U S A; 2008 Nov; 105(45):17538-42. PubMed ID: 18981414 [TBL] [Abstract][Full Text] [Related]
13. The speed-accuracy tradeoff in the elderly brain: a structural model-based approach. Forstmann BU; Tittgemeyer M; Wagenmakers EJ; Derrfuss J; Imperati D; Brown S J Neurosci; 2011 Nov; 31(47):17242-9. PubMed ID: 22114290 [TBL] [Abstract][Full Text] [Related]
14. Individual Differences in Decision Strategy Relate to Neurochemical Excitability and Cortical Thickness. Filmer HL; Loughnan K; Seeto JX; Ballard T; Ehrhardt SE; Shaw TB; Wards Y; Rideaux R; Leow LA; Sewell DK; Dux PE J Neurosci; 2023 Oct; 43(42):7006-7015. PubMed ID: 37657932 [TBL] [Abstract][Full Text] [Related]
15. Plasticity induction in the pre-supplementary motor area (pre-SMA) and SMA-proper differentially affects visuomotor sequence learning. Shimizu T; Hanajima R; Shirota Y; Tsutsumi R; Tanaka N; Terao Y; Hamada M; Ugawa Y Brain Stimul; 2020; 13(1):229-238. PubMed ID: 31434618 [TBL] [Abstract][Full Text] [Related]
16. Continuous theta burst stimulation of the supplementary motor area: effect upon perception and somatosensory and motor evoked potentials. Legon W; Dionne JK; Staines WR Brain Stimul; 2013 Nov; 6(6):877-83. PubMed ID: 23706289 [TBL] [Abstract][Full Text] [Related]
17. The timing and intensity of transcranial magnetic stimulation, and the scalp site stimulated, as variables influencing motor sequence performance in healthy subjects. Gregori B; Currà A; Dinapoli L; Bologna M; Accornero N; Berardelli A Exp Brain Res; 2005 Sep; 166(1):43-55. PubMed ID: 15887005 [TBL] [Abstract][Full Text] [Related]
18. Successful and unsuccessful response inhibitions differentially affect the effective connectivity between insular, presupplementary-motor, and striatal areas. Limongi R; Pérez FJ Behav Neurosci; 2017 Feb; 131(1):20-32. PubMed ID: 28004954 [TBL] [Abstract][Full Text] [Related]
19. Theta burst magnetic stimulation over the pre-supplementary motor area improves motor inhibition. Obeso I; Wilkinson L; Teo JT; Talelli P; Rothwell JC; Jahanshahi M Brain Stimul; 2017; 10(5):944-951. PubMed ID: 28624346 [TBL] [Abstract][Full Text] [Related]
20. Decision making and action implementation: evidence for an early visually triggered motor activation specific to potential actions. Tandonnet C; Garry MI; Summers JJ Psychophysiology; 2013 Jul; 50(7):701-10. PubMed ID: 23679153 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]