These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29274484)

  • 21. Heat and pulsed electric field resistance of pigmented and non-pigmented enterotoxigenic strains of Staphylococcus aureus in exponential and stationary phase of growth.
    Cebrián G; Sagarzazu N; Pagán R; Condón S; Mañas P
    Int J Food Microbiol; 2007 Sep; 118(3):304-11. PubMed ID: 17804103
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures.
    Tadapaneni RK; Yang R; Carter B; Tang J
    Food Res Int; 2017 Dec; 102():203-212. PubMed ID: 29195941
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of growth at low water activity on the thermal tolerance of Staphylococcus aureus.
    Shebuski JR; Vilhelmsson O; Miller KJ
    J Food Prot; 2000 Sep; 63(9):1277-81. PubMed ID: 10983806
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetic behaviour of Staphylococcus aureus on cheese as a function of water activity and temperature.
    Lee H; Kim K; Lee S; Yoon Y
    J Dairy Res; 2015 Feb; 82(1):64-9. PubMed ID: 25381918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survival of foodborne pathogens on inshell walnuts.
    Blessington T; Theofel CG; Mitcham EJ; Harris LJ
    Int J Food Microbiol; 2013 Sep; 166(3):341-8. PubMed ID: 24026009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating.
    Song WJ; Kang DH
    Food Microbiol; 2016 Dec; 60():104-11. PubMed ID: 27554151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of radio-frequency dielectric heating system for destruction of Cronobacter sakazakii and Salmonella species in nonfat dry milk.
    Michael M; Phebus RK; Thippareddi H; Subbiah J; Birla SL; Schmidt KA
    J Dairy Sci; 2014 Dec; 97(12):7316-24. PubMed ID: 25262184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Inactivation of Salmonella in Shell Eggs by Hot Water Immersion and Its Effect on Quality.
    Geveke DJ; Gurtler JB; Jones DR; Bigley AB
    J Food Sci; 2016 Mar; 81(3):M709-14. PubMed ID: 26878421
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thermal inactivation and sublethal injury kinetics of Salmonella enterica and Listeria monocytogenes in broth versus agar surface.
    Wang X; Devlieghere F; Geeraerd A; Uyttendaele M
    Int J Food Microbiol; 2017 Feb; 243():70-77. PubMed ID: 28011300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm.
    Gabriel AA; Ostonal JM; Cristobal JO; Pagal GA; Armada JVE
    Int J Food Microbiol; 2018 Jul; 277():64-73. PubMed ID: 29684767
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat resistance, membrane fluidity and sublethal damage in Staphylococcus aureus cells grown at different temperatures.
    Cebrián G; Condón S; Mañas P
    Int J Food Microbiol; 2019 Jan; 289():49-56. PubMed ID: 30199735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of the medium characteristics and the heating and cooling rates on the nonisothermal heat resistance of Bacillus sporothermodurans IC4 spores.
    Esteban MD; Huertas JP; Fernández PS; Palop A
    Food Microbiol; 2013 May; 34(1):158-63. PubMed ID: 23498193
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Survival of Staphylococcus aureus ATCC 13565 in intermediate moisture foods is highly variable.
    Vora P; Senecal A; Schaffner DW
    Risk Anal; 2003 Feb; 23(1):229-36. PubMed ID: 12635735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Relationships of Water Activity and Moisture Content to the Thermal Inactivation Kinetics of
    Garces-Vega FJ; Ryser ET; Marks BP
    J Food Prot; 2019 Jun; 82(6):963-970. PubMed ID: 31099596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Green synthesis of walnut shell hydrochar, its antimicrobial activity and mechanism on some pathogens as a natural sanitizer.
    Yabalak E; Erdogan Eliuz EA
    Food Chem; 2022 Jan; 366():130608. PubMed ID: 34454799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermobacteriological characterization of Enterobacter sakazakii.
    Arroyo C; Condón S; Pagán R
    Int J Food Microbiol; 2009 Nov; 136(1):110-8. PubMed ID: 19811846
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heat inactivation of catalase from Staphylococcus aureus MF-31.
    Andrews GP; Martin SE
    Appl Environ Microbiol; 1979 Jun; 37(6):1180-5. PubMed ID: 485145
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal Death Kinetics of Conogethes Punctiferalis (Lepidoptera: Pyralidae) as Influenced by Heating Rate and Life Stage.
    Hou L; Du Y; Johnson JA; Wang S
    J Econ Entomol; 2015 Oct; 108(5):2192-9. PubMed ID: 26453708
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Time-temperature effects on Salmonellae and Staphylococci in foods. III. Thermal death time studies.
    ANGELOTTI R; FOTER MJ; LEWIS KH
    Appl Microbiol; 1961 Jul; 9(4):308-15. PubMed ID: 13683564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.