These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 29274493)
1. 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity. Yang X; Wedajo W; Yamada Y; Dahlroth SL; Neo JJ; Dick T; Chui WK Eur J Med Chem; 2018 Jan; 144():262-276. PubMed ID: 29274493 [TBL] [Abstract][Full Text] [Related]
2. Antifolate and antiproliferative activity of 6,8,10-triazaspiro[4.5]deca-6,8-dienes and 1,3,5-triazaspiro[5.5]undeca-1,3-dienes. Ma X; Chui WK Bioorg Med Chem; 2010 Jan; 18(2):737-43. PubMed ID: 20036565 [TBL] [Abstract][Full Text] [Related]
3. Fragment Discovery for the Design of Nitrogen Heterocycles as Mycobacterium tuberculosis Dihydrofolate Reductase Inhibitors. Shelke RU; Degani MS; Raju A; Ray MK; Rajan MG Arch Pharm (Weinheim); 2016 Aug; 349(8):602-13. PubMed ID: 27320965 [TBL] [Abstract][Full Text] [Related]
4. Applying the designed multiple ligands approach to inhibit dihydrofolate reductase and thioredoxin reductase for anti-proliferative activity. Ng HL; Chen S; Chew EH; Chui WK Eur J Med Chem; 2016 Jun; 115():63-74. PubMed ID: 26994844 [TBL] [Abstract][Full Text] [Related]
5. Identification of novel selective Mtb-DHFR inhibitors as antitubercular agents through structure-based computational techniques. Sharma K; Neshat N; Sharma S; Giri N; Srivastava A; Almalki F; Saifullah K; Alam MM; Shaquiquzzaman M; Akhter M Arch Pharm (Weinheim); 2020 Feb; 353(2):e1900287. PubMed ID: 31867798 [TBL] [Abstract][Full Text] [Related]
6. Rational drug design, synthesis and biological evaluation of dihydrofolate reductase inhibitors as antituberculosis agents. Tawari NR; Bag S; Raju A; Lele AC; Bairwa R; Ray MK; Rajan MG; Nawale LU; Sarkar D; Degani MS Future Med Chem; 2015; 7(8):979-88. PubMed ID: 26062396 [TBL] [Abstract][Full Text] [Related]
7. Preparation, biological evaluation and molecular docking study of imidazolyl dihydropyrimidines as potential Mycobacterium tuberculosis dihydrofolate reductase inhibitors. Desai NC; Trivedi AR; Khedkar VM Bioorg Med Chem Lett; 2016 Aug; 26(16):4030-5. PubMed ID: 27397497 [TBL] [Abstract][Full Text] [Related]
8. The identification of novel Mycobacterium tuberculosis DHFR inhibitors and the investigation of their binding preferences by using molecular modelling. Hong W; Wang Y; Chang Z; Yang Y; Pu J; Sun T; Kaur S; Sacchettini JC; Jung H; Lin Wong W; Fah Yap L; Fong Ngeow Y; Paterson IC; Wang H Sci Rep; 2015 Oct; 5():15328. PubMed ID: 26471125 [TBL] [Abstract][Full Text] [Related]
9. Potency boost of a Aragaw WW; Lee BM; Yang X; Zimmerman MD; Gengenbacher M; Dartois V; Chui WK; Jackson CJ; Dick T Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161270 [TBL] [Abstract][Full Text] [Related]
10. In silico structure-based design of a novel class of potent and selective small peptide inhibitor of Mycobacterium tuberculosis Dihydrofolate reductase, a potential target for anti-TB drug discovery. Kumar M; Vijayakrishnan R; Subba Rao G Mol Divers; 2010 Aug; 14(3):595-604. PubMed ID: 19697148 [TBL] [Abstract][Full Text] [Related]
11. Synthesis, biological evaluation and molecular modeling of novel azaspiro dihydrotriazines as influenza virus inhibitors targeting the host factor dihydrofolate reductase (DHFR). Francesconi V; Giovannini L; Santucci M; Cichero E; Costi MP; Naesens L; Giordanetto F; Tonelli M Eur J Med Chem; 2018 Jul; 155():229-243. PubMed ID: 29886325 [TBL] [Abstract][Full Text] [Related]
12. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis. El-Hamamsy MH; Smith AW; Thompson AS; Threadgill MD Bioorg Med Chem; 2007 Jul; 15(13):4552-76. PubMed ID: 17451962 [TBL] [Abstract][Full Text] [Related]
14. Design, synthesis, and antifolate activity of new analogues of piritrexim and other diaminopyrimidine dihydrofolate reductase inhibitors with omega-carboxyalkoxy or omega-carboxy-1-alkynyl substitution in the side chain. Chan DC; Fu H; Forsch RA; Queener SF; Rosowsky A J Med Chem; 2005 Jun; 48(13):4420-31. PubMed ID: 15974594 [TBL] [Abstract][Full Text] [Related]
15. Propargyl-Linked Antifolates Are Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis. Hajian B; Scocchera E; Keshipeddy S; G-Dayanandan N; Shoen C; Krucinska J; Reeve S; Cynamon M; Anderson AC; Wright DL PLoS One; 2016; 11(8):e0161740. PubMed ID: 27580226 [TBL] [Abstract][Full Text] [Related]
16. Thiazolo[4,5-d]pyridazine analogues as a new class of dihydrofolate reductase (DHFR) inhibitors: Synthesis, biological evaluation and molecular modeling study. Ewida MA; Abou El Ella DA; Lasheen DS; Ewida HA; El-Gazzar YI; El-Subbagh HI Bioorg Chem; 2017 Oct; 74():228-237. PubMed ID: 28865294 [TBL] [Abstract][Full Text] [Related]
17. 2,4-diamino-5-deaza-6-substituted pyrido[2,3-d]pyrimidine antifolates as potent and selective nonclassical inhibitors of dihydrofolate reductases. Gangjee A; Vasudevan A; Queener SF; Kisliuk RL J Med Chem; 1996 Mar; 39(7):1438-46. PubMed ID: 8691474 [TBL] [Abstract][Full Text] [Related]
18. Rational modification of the lead molecule: Enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Kaur J; Kaur S; Singh P Bioorg Med Chem Lett; 2016 Apr; 26(8):1936-40. PubMed ID: 26979156 [TBL] [Abstract][Full Text] [Related]
19. New 2,4-diamino-5-(2',5'-substituted benzyl)pyrimidines as potential drugs against opportunistic infections of AIDS and other immune disorders. Synthesis and species-dependent antifolate activity. Rosowsky A; Forsch RA; Sibley CH; Inderlied CB; Queener SF J Med Chem; 2004 Mar; 47(6):1475-86. PubMed ID: 14998335 [TBL] [Abstract][Full Text] [Related]