BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

43 related articles for article (PubMed ID: 29274493)

  • 1. Novel Saccharomyces cerevisiae screen identifies WR99210 analogues that inhibit Mycobacterium tuberculosis dihydrofolate reductase.
    Gerum AB; Ulmer JE; Jacobus DP; Jensen NP; Sherman DR; Sibley CH
    Antimicrob Agents Chemother; 2002 Nov; 46(11):3362-9. PubMed ID: 12384337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, molecular docking study and biological evaluation of new pyrrole scaffolds as potential antitubercular agents for dual targeting of enoyl ACP reductase and dihydrofolate reductase.
    Mahnashi MH; Avunoori S; Gopi S; Shaikh IA; Saif A; Bantun F; Faidah HS; Alhadi AA; Alshehri JH; Alharbi AA; S R PK; Joshi SD
    PLoS One; 2024; 19(5):e0303173. PubMed ID: 38739587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring the potential and identifying
    Gurushankar K; Rimac H; Nadezhda P; Grishina M
    J Biomol Struct Dyn; 2023; 41(23):13963-13976. PubMed ID: 36762693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Host dihydrofolate reductase (DHFR)-directed cycloguanil analogues endowed with activity against influenza virus and respiratory syncytial virus.
    Tonelli M; Naesens L; Gazzarrini S; Santucci M; Cichero E; Tasso B; Moroni A; Costi MP; Loddo R
    Eur J Med Chem; 2017 Jul; 135():467-478. PubMed ID: 28477572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration and Biological Evaluation of 1,3-Diamino-7
    Zhu Z; Chen C; Zhang J; Lai F; Feng J; Wu G; Xia J; Zhang W; Han Z; Zhang C; Yang Q; Wang Y; Liu B; Li T; Wu S
    J Med Chem; 2023 Oct; 66(20):13946-13967. PubMed ID: 37698518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cymoxanil disrupts RNA synthesis through inhibiting the activity of dihydrofolate reductase.
    Kazmirchuk TDD; Burnside DJ; Wang J; Jagadeesan SK; Al-Gafari M; Silva E; Potter T; Bradbury-Jost C; Ramessur NB; Ellis B; Takallou S; Hajikarimlou M; Moteshareie H; Said KB; Samanfar B; Fletcher E; Golshani A
    Sci Rep; 2024 May; 14(1):11695. PubMed ID: 38778133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fragment-Merging Strategies with Known Pyrimidine Scaffolds Targeting Dihydrofolate Reductase from Mycobacterium tuberculosis.
    Kirkman T; Fun Tan S; Chavez-Pacheco SM; Hammer A; Abell C; Tosin M; Coyne AG; Dias MVB
    ChemMedChem; 2023 Aug; 18(15):e202300240. PubMed ID: 37195570
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Novel Coumestan Derivatives as Polyketide Synthase 13 Inhibitors against Mycobacterium tuberculosis.
    Zhang W; Lun S; Wang SH; Jiang XW; Yang F; Tang J; Manson AL; Earl AM; Gunosewoyo H; Bishai WR; Yu LF
    J Med Chem; 2018 Feb; 61(3):791-803. PubMed ID: 29328655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological validation of dihydrofolate reductase as a drug target in
    Aragaw WW; Negatu DA; Bungard CJ; Dartois VA; Marrouni AE; Nickbarg EB; Olsen DB; Warrass R; Dick T
    Antimicrob Agents Chemother; 2024 Jan; 68(1):e0071723. PubMed ID: 38018963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The implication of Mycobacterium tuberculosis-mediated metabolism of targeted xenobiotics.
    Singh V; Dziwornu GA; Chibale K
    Nat Rev Chem; 2023 May; 7(5):340-354. PubMed ID: 37117810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and Characterization of Phenylalanine Amides Active against
    Lang M; Ganapathy US; Mann L; Abdelaziz R; Seidel RW; Goddard R; Sequenzia I; Hoenke S; Schulze P; Aragaw WW; Csuk R; Dick T; Richter A
    J Med Chem; 2023 Apr; 66(7):5079-5098. PubMed ID: 37001025
    [No Abstract]   [Full Text] [Related]  

  • 12. Potency boost of a
    Aragaw WW; Lee BM; Yang X; Zimmerman MD; Gengenbacher M; Dartois V; Chui WK; Jackson CJ; Dick T
    Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34161270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical Classes Presenting Novel Antituberculosis Agents Currently in Different Phases of Drug Development: A 2010-2020 Review.
    Angula KT; Legoabe LJ; Beteck RM
    Pharmaceuticals (Basel); 2021 May; 14(5):. PubMed ID: 34068171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery of Oxazol-2-amine Derivatives as Potent Novel FLT3 Inhibitors.
    Kim HJ; Ryu H; Song JY; Hwang SG; Jalde SS; Choi HK; Ahn J
    Molecules; 2020 Nov; 25(21):. PubMed ID: 33167505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential anti-TB investigational compounds and drugs with repurposing potential in TB therapy: a conspectus.
    Adeniji AA; Knoll KE; Loots DT
    Appl Microbiol Biotechnol; 2020 Jul; 104(13):5633-5662. PubMed ID: 32372202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview.
    Bozorov K; Zhao J; Aisa HA
    Bioorg Med Chem; 2019 Aug; 27(16):3511-3531. PubMed ID: 31300317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1,3,5-triazaspiro[5.5]undeca-2,4-dienes as selective Mycobacterium tuberculosis dihydrofolate reductase inhibitors with potent whole cell activity.
    Yang X; Wedajo W; Yamada Y; Dahlroth SL; Neo JJ; Dick T; Chui WK
    Eur J Med Chem; 2018 Jan; 144():262-276. PubMed ID: 29274493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifolate and antiproliferative activity of 6,8,10-triazaspiro[4.5]deca-6,8-dienes and 1,3,5-triazaspiro[5.5]undeca-1,3-dienes.
    Ma X; Chui WK
    Bioorg Med Chem; 2010 Jan; 18(2):737-43. PubMed ID: 20036565
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.