These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29274907)
1. RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment. Guan Q; Yu J; Zhu W; Yang B; Li Y; Zhang L; Tian J Gene; 2018 Mar; 645():60-68. PubMed ID: 29274907 [TBL] [Abstract][Full Text] [Related]
2. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas. Vigna BB; de Oliveira FA; de Toledo-Silva G; da Silva CC; do Valle CB; de Souza AP BMC Genomics; 2016 Nov; 17(1):910. PubMed ID: 27835957 [TBL] [Abstract][Full Text] [Related]
3. SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark. Li Y; Liu S; Shawky E; Tao M; Liu A; Sulaiman K; Tian J; Zhu W J Photochem Photobiol B; 2022 May; 230():112443. PubMed ID: 35429828 [TBL] [Abstract][Full Text] [Related]
4. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost. Yu X; Zhu Y; Fan J; Wang D; Gong X; Ouyang Z Chem Biodivers; 2017 Aug; 14(8):. PubMed ID: 28281324 [TBL] [Abstract][Full Text] [Related]
5. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses. Shukla P; Reddy RA; Ponnuvel KM; Rohela GK; Shabnam AA; Ghosh MK; Mishra RK Mol Biol Rep; 2019 Apr; 46(2):1809-1817. PubMed ID: 30694457 [TBL] [Abstract][Full Text] [Related]
6. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium. Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275 [TBL] [Abstract][Full Text] [Related]
7. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Lateef A; Prabhudas SK; Natarajan P Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583 [TBL] [Abstract][Full Text] [Related]
8. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera). Xianjun P; Linhong T; Xiaoman W; Yucheng W; Shihua S PLoS One; 2014; 9(5):e97487. PubMed ID: 24848504 [TBL] [Abstract][Full Text] [Related]
9. RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.). Zeng F; Biligetu B; Coulman B; Schellenberg MP; Fu YB PLoS One; 2017; 12(5):e0177417. PubMed ID: 28531235 [TBL] [Abstract][Full Text] [Related]
10. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis. Wang G; Du X; Ji J; Guan C; Li Z; Josine TL Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268 [TBL] [Abstract][Full Text] [Related]
11. De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl. Liu C; Dou Y; Guan X; Fu Q; Zhang Z; Hu Z; Zheng J; Lu Y; Li W PLoS One; 2017; 12(6):e0179219. PubMed ID: 28614366 [TBL] [Abstract][Full Text] [Related]
12. Organ-Specific Analysis of Zhu W; Zhong Z; Liu S; Yang B; Komatsu S; Ge Z; Tian J Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654535 [No Abstract] [Full Text] [Related]
13. Metabolic Profiling and Transcriptome Analysis of Mulberry Leaves Provide Insights into Flavonoid Biosynthesis. Li D; Chen G; Ma B; Zhong C; He N J Agric Food Chem; 2020 Feb; 68(5):1494-1504. PubMed ID: 31917553 [TBL] [Abstract][Full Text] [Related]
14. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome. Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127 [TBL] [Abstract][Full Text] [Related]
15. Identification of heat shock proteins via transcriptome profiling of tree peony leaf exposed to high temperature. Zhang YZ; Cheng YW; Ya HY; Han JM; Zheng L Genet Mol Res; 2015 Jul; 14(3):8431-42. PubMed ID: 26345770 [TBL] [Abstract][Full Text] [Related]
16. Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop ( Mishra AK; Kocábek T; Sukumari Nath V; Awasthi P; Shrestha A; Kumar Killi U; Jakse J; Patzak J; Krofta K; Matoušek J Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905722 [TBL] [Abstract][Full Text] [Related]
17. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja. Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006 [TBL] [Abstract][Full Text] [Related]
18. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
19. De novo assembly and characterization of Oryza officinalis leaf transcriptome by using RNA-seq. Bao Y; Xu S; Jing X; Meng L; Qin Z Biomed Res Int; 2015; 2015():982065. PubMed ID: 25713814 [TBL] [Abstract][Full Text] [Related]
20. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach. Mehta RH; Ponnuchamy M; Kumar J; Reddy NR Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]