BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29274907)

  • 1. RNA-Seq transcriptomic analysis of the Morus alba L. leaves exposed to high-level UVB with or without dark treatment.
    Guan Q; Yu J; Zhu W; Yang B; Li Y; Zhang L; Tian J
    Gene; 2018 Mar; 645():60-68. PubMed ID: 29274907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf transcriptome of two highly divergent genotypes of Urochloa humidicola (Poaceae), a tropical polyploid forage grass adapted to acidic soils and temporary flooding areas.
    Vigna BB; de Oliveira FA; de Toledo-Silva G; da Silva CC; do Valle CB; de Souza AP
    BMC Genomics; 2016 Nov; 17(1):910. PubMed ID: 27835957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SWATH-based quantitative proteomic analysis of Morus alba L. leaves after exposure to ultraviolet-B radiation and incubation in the dark.
    Li Y; Liu S; Shawky E; Tao M; Liu A; Sulaiman K; Tian J; Zhu W
    J Photochem Photobiol B; 2022 May; 230():112443. PubMed ID: 35429828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accumulation of Flavonoid Glycosides and UFGT Gene Expression in Mulberry Leaves (Morus alba L.) before and after Frost.
    Yu X; Zhu Y; Fan J; Wang D; Gong X; Ouyang Z
    Chem Biodivers; 2017 Aug; 14(8):. PubMed ID: 28281324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of suitable reference genes for quantitative real-time PCR gene expression analysis in Mulberry (Morus alba L.) under different abiotic stresses.
    Shukla P; Reddy RA; Ponnuvel KM; Rohela GK; Shabnam AA; Ghosh MK; Mishra RK
    Mol Biol Rep; 2019 Apr; 46(2):1809-1817. PubMed ID: 30694457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole-transcriptome analysis of differentially expressed genes in the ray florets and disc florets of Chrysanthemum morifolium.
    Liu H; Sun M; Du D; Pan H; Cheng T; Wang J; Zhang Q; Gao Y
    BMC Genomics; 2016 May; 17():398. PubMed ID: 27225275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways.
    Lateef A; Prabhudas SK; Natarajan P
    Sci Rep; 2018 Oct; 8(1):15375. PubMed ID: 30337583
    [TBL] [Abstract][Full Text] [Related]  

  • 8. De Novo assembly of expressed transcripts and global transcriptomic analysis from seedlings of the paper mulberry (Broussonetia kazinoki x Broussonetia papyifera).
    Xianjun P; Linhong T; Xiaoman W; Yucheng W; Shihua S
    PLoS One; 2014; 9(5):e97487. PubMed ID: 24848504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq analysis of gene expression for floral development in crested wheatgrass (Agropyron cristatum L.).
    Zeng F; Biligetu B; Coulman B; Schellenberg MP; Fu YB
    PLoS One; 2017; 12(5):e0177417. PubMed ID: 28531235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. De novo characterization of the Lycium chinense Mill. leaf transcriptome and analysis of candidate genes involved in carotenoid biosynthesis.
    Wang G; Du X; Ji J; Guan C; Li Z; Josine TL
    Gene; 2015 Jan; 555(2):458-63. PubMed ID: 25445268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo transcriptomic analysis and development of EST-SSRs for Sorbus pohuashanensis (Hance) Hedl.
    Liu C; Dou Y; Guan X; Fu Q; Zhang Z; Hu Z; Zheng J; Lu Y; Li W
    PLoS One; 2017; 12(6):e0179219. PubMed ID: 28614366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Organ-Specific Analysis of
    Zhu W; Zhong Z; Liu S; Yang B; Komatsu S; Ge Z; Tian J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654535
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic Profiling and Transcriptome Analysis of Mulberry Leaves Provide Insights into Flavonoid Biosynthesis.
    Li D; Chen G; Ma B; Zhong C; He N
    J Agric Food Chem; 2020 Feb; 68(5):1494-1504. PubMed ID: 31917553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De Novo Sequencing and Assembly Analysis of the Pseudostellaria heterophylla Transcriptome.
    Li J; Zhen W; Long D; Ding L; Gong A; Xiao C; Jiang W; Liu X; Zhou T; Huang L
    PLoS One; 2016; 11(10):e0164235. PubMed ID: 27764127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of heat shock proteins via transcriptome profiling of tree peony leaf exposed to high temperature.
    Zhang YZ; Cheng YW; Ya HY; Han JM; Zheng L
    Genet Mol Res; 2015 Jul; 14(3):8431-42. PubMed ID: 26345770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissection of Dynamic Transcriptome Landscape of Leaf, Bract, and Lupulin Gland in Hop (
    Mishra AK; Kocábek T; Sukumari Nath V; Awasthi P; Shrestha A; Kumar Killi U; Jakse J; Patzak J; Krofta K; Matoušek J
    Int J Mol Sci; 2019 Dec; 21(1):. PubMed ID: 31905722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De Novo Transcriptome Assembly and Annotation of the Leaves and Callus of Cyclocarya Paliurus (Bata1) Iljinskaja.
    Xu X; Yin Z; Chen J; Wang X; Peng D; Shangguan X
    PLoS One; 2016; 11(8):e0160279. PubMed ID: 27483006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation.
    Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y
    BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo assembly and characterization of Oryza officinalis leaf transcriptome by using RNA-seq.
    Bao Y; Xu S; Jing X; Meng L; Qin Z
    Biomed Res Int; 2015; 2015():982065. PubMed ID: 25713814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring drought stress-regulated genes in senna (Cassia angustifolia Vahl.): a transcriptomic approach.
    Mehta RH; Ponnuchamy M; Kumar J; Reddy NR
    Funct Integr Genomics; 2017 Jan; 17(1):1-25. PubMed ID: 27709374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.