BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 29275282)

  • 1. Study of factors involved in the gravimetric separation process to treat soil contaminated by municipal solid waste.
    Mouedhen I; Coudert L; Blais JF; Mercier G
    J Environ Manage; 2018 Mar; 209():23-36. PubMed ID: 29275282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of physical separation of metals from soils contaminated with municipal solid waste ashes and metallurgical residues.
    Mouedhen I; Coudert L; Blais JF; Mercier G
    Waste Manag; 2019 Jun; 93():138-152. PubMed ID: 31235050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of inorganic contaminants and polycyclic aromatic hydrocarbons from soils polluted by municipal solid waste incineration residues.
    Jobin P; Coudert L; Taillard V; Blais JF; Mercier G
    Environ Technol; 2016 Aug; 37(15):1983-95. PubMed ID: 26729603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.
    Liao X; Li Y; Yan X
    J Environ Sci (China); 2016 Mar; 41():202-210. PubMed ID: 26969066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Performance of Bioleaching Combined with Fenton-like Reaction in Heavy Metals Removal from Contaminated Soil].
    Zhou PX; Yan X; Yu Z; Wang YQ; Zhu Y; Zhou SG
    Huan Jing Ke Xue; 2016 Sep; 37(9):3575-3581. PubMed ID: 29964795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wet shaking table operating parameters optimization for maximizing metal recovery from incineration bottom ash fine fraction.
    Muñiz Sierra H; Šyc M; Korotenko E
    Waste Manag; 2024 Feb; 174():539-548. PubMed ID: 38134541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remediation of metal-contaminated urban soil using flotation technique.
    Dermont G; Bergeron M; Richer-Laflèche M; Mercier G
    Sci Total Environ; 2010 Feb; 408(5):1199-211. PubMed ID: 19959208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of wet shaking table process using response surface methodology applied to the separation of copper and aluminum from the fine fraction of shredder ELVs.
    Jordão H; Sousa AJ; Carvalho MT
    Waste Manag; 2016 Feb; 48():366-373. PubMed ID: 26470828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remediation of multiple heavy metal-contaminated soil through the combination of soil washing and in situ immobilization.
    Zhai X; Li Z; Huang B; Luo N; Huang M; Zhang Q; Zeng G
    Sci Total Environ; 2018 Sep; 635():92-99. PubMed ID: 29660731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Heavy Metal Contamination in Farmland Soils at an E-waste Disassembling Site in Qingyuan, Guangdong, South China].
    Zhang JL; Ding JF; Lu GN; Dang Z; Yi XY
    Huan Jing Ke Xue; 2015 Jul; 36(7):2633-40. PubMed ID: 26489335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing removal of arsenic, chromium, copper, pentachlorophenol and polychlorodibenzo-dioxins/furans from the 1-4 mm fraction of polluted soil using an attrition process.
    Guemiza K; Coudert L; Tran LH; Metahni S; Blais JF; Besner S; Mercier G
    Environ Technol; 2017 Aug; 38(15):1862-1877. PubMed ID: 27652498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China.
    Bi C; Zhou Y; Chen Z; Jia J; Bao X
    Sci Total Environ; 2018 Apr; 619-620():1349-1357. PubMed ID: 29734612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Total contents and sequential extraction of heavy metals in soils irrigated with wastewater, Akaki, Ethiopia.
    Fitamo D; Itana F; Olsson M
    Environ Manage; 2007 Feb; 39(2):178-93. PubMed ID: 17160509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Distribution and migration of heavy metals in soil profiles by high-resolution sampling].
    Ruan XL; Zhang GL; Zhao YG; Yuan DG; Wu YJ
    Huan Jing Ke Xue; 2006 May; 27(5):1020-5. PubMed ID: 16850852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fresh organic matter of municipal solid waste enhances phytoextraction of heavy metals from contaminated soil.
    Salati S; Quadri G; Tambone F; Adani F
    Environ Pollut; 2010 May; 158(5):1899-906. PubMed ID: 19932537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1.
    Deng X; Chai L; Yang Z; Tang C; Tong H; Yuan P
    J Hazard Mater; 2012 Sep; 233-234():25-32. PubMed ID: 22795840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.