These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 29275628)

  • 21. Surface-enhanced Raman scattering on nanoshells with tunable surface plasmon resonance.
    Alvarez-Puebla RA; Ross DJ; Nazri GA; Aroca RF
    Langmuir; 2005 Nov; 21(23):10504-8. PubMed ID: 16262313
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Plasmon enhanced upconversion luminescence of NaYF4:Yb,Er@SiO2@Ag core-shell nanocomposites for cell imaging.
    Yuan P; Lee YH; Gnanasammandhan MK; Guan Z; Zhang Y; Xu QH
    Nanoscale; 2012 Aug; 4(16):5132-7. PubMed ID: 22790174
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission.
    Lakowicz JR
    Anal Biochem; 2005 Feb; 337(2):171-94. PubMed ID: 15691498
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface molecular imprinting onto silver microspheres for surface enhanced Raman scattering applications.
    Chang L; Ding Y; Li X
    Biosens Bioelectron; 2013 Dec; 50():106-10. PubMed ID: 23838276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Graphene Oxide-Supported Ag Nanoplates as LSPR Tunable and Reproducible Substrates for SERS Applications with Optimized Sensitivity.
    Hou H; Wang P; Zhang J; Li C; Jin Y
    ACS Appl Mater Interfaces; 2015 Aug; 7(32):18038-45. PubMed ID: 26203672
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrafast and nonlinear surface-enhanced Raman spectroscopy.
    Gruenke NL; Cardinal MF; McAnally MO; Frontiera RR; Schatz GC; Van Duyne RP
    Chem Soc Rev; 2016 Apr; 45(8):2263-90. PubMed ID: 26848784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Molecule Surface-Enhanced Raman Scattering Sensitivity of Ag-Core Au-Shell Nanoparticles: Revealed by Bi-Analyte Method.
    Patra PP; Kumar GV
    J Phys Chem Lett; 2013 Apr; 4(7):1167-71. PubMed ID: 26282037
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling.
    Dai D; Dong Z; Fan J
    Nanotechnology; 2013 Jan; 24(2):025201. PubMed ID: 23238520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optimization of Ag coated hydrogen silsesquioxane square array hybrid structure design for surface-enhanced Raman scattering substrate.
    Wang H; Huo Z; Zhang Z; Chen S; Jiang S
    Opt Express; 2018 Jan; 26(2):1097-1107. PubMed ID: 29401988
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Silica-coated triangular gold nanoprisms as distance-dependent plasmon-enhanced fluorescence-based probes for biochemical applications.
    You Y; Song Q; Wang L; Niu C; Na N; Ouyang J
    Nanoscale; 2016 Oct; 8(42):18150-18160. PubMed ID: 27739545
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface plasmon resonance induced enhancement of photoluminescence and Raman line intensity in SnS quantum dot-Sn nanoparticle hybrid structure.
    Warrier AR; Gandhimathi R
    Methods Appl Fluoresc; 2018 Apr; 6(3):035009. PubMed ID: 29633725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic nanoantenna arrays for surface-enhanced Raman spectroscopy of lipid molecules embedded in a bilayer membrane.
    Kühler P; Weber M; Lohmüller T
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):8947-52. PubMed ID: 24896979
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional Fe3O4@Ag/SiO2/Au core-shell microspheres as a novel SERS-activity label via long-range plasmon coupling.
    Shen J; Zhu Y; Yang X; Zong J; Li C
    Langmuir; 2013 Jan; 29(2):690-5. PubMed ID: 23206276
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates.
    Jubb AM; Jiao Y; Eres G; Retterer ST; Gu B
    Nanoscale; 2016 Mar; 8(10):5641-8. PubMed ID: 26893035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [NIR-SERS Spectra Detection of Cytidine on Nano-Silver Films].
    Zhang DQ; Liu RM; Zhang GQ; Zhang Y; Xiong Y; Zhang CY; Li L; Si MZ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Mar; 36(3):743-8. PubMed ID: 27400517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement.
    Deng YH; Yang ZJ; He J
    Opt Express; 2018 Nov; 26(24):31116-31128. PubMed ID: 30650702
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An effective surface-enhanced Raman scattering template based on a Ag nanocluster-ZnO nanowire array.
    Deng S; Fan HM; Zhang X; Loh KP; Cheng CL; Sow CH; Foo YL
    Nanotechnology; 2009 Apr; 20(17):175705. PubMed ID: 19420600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shell-isolated nanoparticle-enhanced Raman spectroscopy: expanding the versatility of surface-enhanced Raman scattering.
    Anema JR; Li JF; Yang ZL; Ren B; Tian ZQ
    Annu Rev Anal Chem (Palo Alto Calif); 2011; 4():129-50. PubMed ID: 21370987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced waveguide-type ultraviolet electroluminescence from ZnO/MgZnO core/shell nanorod array light-emitting diodes via coupling with Ag nanoparticles localized surface plasmons.
    Zhang C; Marvinney CE; Xu HY; Liu WZ; Wang CL; Zhang LX; Wang JN; Ma JG; Liu YC
    Nanoscale; 2015 Jan; 7(3):1073-80. PubMed ID: 25475883
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering.
    Zhang CX; Su L; Chan YF; Wu ZL; Zhao YM; Xu HJ; Sun XM
    Nanotechnology; 2013 Aug; 24(33):335501. PubMed ID: 23881155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.