BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

335 related articles for article (PubMed ID: 29275991)

  • 1. Phytochrome A Negatively Regulates the Shade Avoidance Response by Increasing Auxin/Indole Acidic Acid Protein Stability.
    Yang C; Xie F; Jiang Y; Li Z; Huang X; Li L
    Dev Cell; 2018 Jan; 44(1):29-41.e4. PubMed ID: 29275991
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rewiring of auxin signaling under persistent shade.
    Pucciariello O; Legris M; Costigliolo Rojas C; Iglesias MJ; Hernando CE; Dezar C; Vazquez M; Yanovsky MJ; Finlayson SA; Prat S; Casal JJ
    Proc Natl Acad Sci U S A; 2018 May; 115(21):5612-5617. PubMed ID: 29724856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The shade avoidance syndrome in Arabidopsis: the antagonistic role of phytochrome a and B differentiates vegetation proximity and canopy shade.
    Martínez-García JF; Gallemí M; Molina-Contreras MJ; Llorente B; Bevilaqua MR; Quail PH
    PLoS One; 2014; 9(10):e109275. PubMed ID: 25333270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses.
    Effendi Y; Jones AM; Scherer GF
    J Exp Bot; 2013 Nov; 64(16):5065-74. PubMed ID: 24052532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling.
    Lv B; Yu Q; Liu J; Wen X; Yan Z; Hu K; Li H; Kong X; Li C; Tian H; De Smet I; Zhang XS; Ding Z
    EMBO J; 2020 Jan; 39(1):e101515. PubMed ID: 31617603
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation.
    Maraschin Fdos S; Memelink J; Offringa R
    Plant J; 2009 Jul; 59(1):100-9. PubMed ID: 19309453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB.
    Shimizu-Mitao Y; Kakimoto T
    Plant Cell Physiol; 2014 Aug; 55(8):1450-9. PubMed ID: 24880779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytochrome A elevates plant circadian-clock components to suppress shade avoidance in deep-canopy shade.
    Fraser DP; Panter PE; Sharma A; Sharma B; Dodd AN; Franklin KA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(27):. PubMed ID: 34187900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phytochrome B promotes branching in Arabidopsis by suppressing auxin signaling.
    Krishna Reddy S; Finlayson SA
    Plant Physiol; 2014 Mar; 164(3):1542-50. PubMed ID: 24492336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytochrome interacting factors 4 and 5 control seedling growth in changing light conditions by directly controlling auxin signaling.
    Hornitschek P; Kohnen MV; Lorrain S; Rougemont J; Ljung K; López-Vidriero I; Franco-Zorrilla JM; Solano R; Trevisan M; Pradervand S; Xenarios I; Fankhauser C
    Plant J; 2012 Sep; 71(5):699-711. PubMed ID: 22536829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CONSTANS-LIKE 7 (COL7) is involved in phytochrome B (phyB)-mediated light-quality regulation of auxin homeostasis.
    Zhang Z; Ji R; Li H; Zhao T; Liu J; Lin C; Liu B
    Mol Plant; 2014 Sep; 7(9):1429-1440. PubMed ID: 24908267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition.
    Keuskamp DH; Pollmann S; Voesenek LA; Peeters AJ; Pierik R
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22740-4. PubMed ID: 21149713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAR-RED INSENSITIVE 219 and phytochrome B corepress shade avoidance via modulating nuclear speckle formation.
    Peng KC; Siao W; Hsieh HL
    Plant Physiol; 2023 May; 192(2):1449-1465. PubMed ID: 36869668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochrome A inhibits shade avoidance responses under strong shade through repressing the brassinosteroid pathway in Arabidopsis.
    Song B; Zhao H; Dong K; Wang M; Wu S; Li S; Wang Y; Chen P; Jiang L; Tao Y
    Plant J; 2020 Dec; 104(6):1520-1534. PubMed ID: 33037720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional characterization of phytochrome autophosphorylation in plant light signaling.
    Han YJ; Kim HS; Kim YM; Shin AY; Lee SS; Bhoo SH; Song PS; Kim JI
    Plant Cell Physiol; 2010 Apr; 51(4):596-609. PubMed ID: 20203237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arabidopsis thaliana TERMINAL FLOWER2 is involved in light-controlled signalling during seedling photomorphogenesis.
    Valdés AE; Rizzardi K; Johannesson H; Para A; Sundås-Larsson A; Landberg K
    Plant Cell Environ; 2012 Jun; 35(6):1013-25. PubMed ID: 22145973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoactivated CRY1 and phyB Interact Directly with AUX/IAA Proteins to Inhibit Auxin Signaling in Arabidopsis.
    Xu F; He S; Zhang J; Mao Z; Wang W; Li T; Hua J; Du S; Xu P; Li L; Lian H; Yang HQ
    Mol Plant; 2018 Apr; 11(4):523-541. PubMed ID: 29269022
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Menon C; Klose C; Hiltbrunner A
    Plant Commun; 2020 Mar; 1(2):100007. PubMed ID: 33404546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light.
    Lorrain S; Trevisan M; Pradervand S; Fankhauser C
    Plant J; 2009 Nov; 60(3):449-61. PubMed ID: 19619162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial Regulation of the Gene Expression Response to Shade in Arabidopsis Seedlings.
    Nito K; Kajiyama T; Unten-Kobayashi J; Fujii A; Mochizuki N; Kambara H; Nagatani A
    Plant Cell Physiol; 2015 Jul; 56(7):1306-19. PubMed ID: 25907567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.