BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 29275994)

  • 1. A Proximity Labeling Strategy Provides Insights into the Composition and Dynamics of Lipid Droplet Proteomes.
    Bersuker K; Peterson CWH; To M; Sahl SJ; Savikhin V; Grossman EA; Nomura DK; Olzmann JA
    Dev Cell; 2018 Jan; 44(1):97-112.e7. PubMed ID: 29275994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Lipid Droplet Proteomes by Proximity Labeling Proteomics Using APEX2.
    Bersuker K; Olzmann JA
    Methods Mol Biol; 2019; 2008():57-72. PubMed ID: 31124088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Close Proximity: The Lipid Droplet Proteome and Crosstalk With the Endoplasmic Reticulum.
    Bersuker K; Olzmann JA
    Contact (Thousand Oaks); 2018; 1():. PubMed ID: 30101213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Establishing the lipid droplet proteome: Mechanisms of lipid droplet protein targeting and degradation.
    Bersuker K; Olzmann JA
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Oct; 1862(10 Pt B):1166-1177. PubMed ID: 28627435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Quality Control and Lipid Droplet Metabolism.
    Roberts MA; Olzmann JA
    Annu Rev Cell Dev Biol; 2020 Oct; 36():115-139. PubMed ID: 33021827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimized protocol for the identification of lipid droplet proteomes using proximity labeling proteomics in cultured human cells.
    Peterson CWH; Deol KK; To M; Olzmann JA
    STAR Protoc; 2021 Jun; 2(2):100579. PubMed ID: 34151299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PUX10 Is a Lipid Droplet-Localized Scaffold Protein That Interacts with CELL DIVISION CYCLE48 and Is Involved in the Degradation of Lipid Droplet Proteins.
    Kretzschmar FK; Mengel LA; Müller AO; Schmitt K; Blersch KF; Valerius O; Braus GH; Ischebeck T
    Plant Cell; 2018 Sep; 30(9):2137-2160. PubMed ID: 30087207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cytosolic lipid droplets: from mechanisms of fat storage to disease.
    Gross DA; Silver DL
    Crit Rev Biochem Mol Biol; 2014; 49(4):304-26. PubMed ID: 25039762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid disequilibrium disrupts ER proteostasis by impairing ERAD substrate glycan trimming and dislocation.
    To M; Peterson CW; Roberts MA; Counihan JL; Wu TT; Forster MS; Nomura DK; Olzmann JA
    Mol Biol Cell; 2017 Jan; 28(2):270-284. PubMed ID: 27881664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of the lipid droplet proteome of the Oleaginous yeast rhodosporidium toruloides.
    Zhu Z; Ding Y; Gong Z; Yang L; Zhang S; Zhang C; Lin X; Shen H; Zou H; Xie Z; Yang F; Zhao X; Liu P; Zhao ZK
    Eukaryot Cell; 2015 Mar; 14(3):252-64. PubMed ID: 25576482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein correlation profiles identify lipid droplet proteins with high confidence.
    Krahmer N; Hilger M; Kory N; Wilfling F; Stoehr G; Mann M; Farese RV; Walther TC
    Mol Cell Proteomics; 2013 May; 12(5):1115-26. PubMed ID: 23319140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the sebocyte lipid droplet proteome reveals novel potential regulators of sebaceous lipogenesis.
    Dahlhoff M; Fröhlich T; Arnold GJ; Müller U; Leonhardt H; Zouboulis CC; Schneider MR
    Exp Cell Res; 2015 Mar; 332(1):146-55. PubMed ID: 25523620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative analysis of the murine lipid droplet-associated proteome during diet-induced hepatic steatosis.
    Khan SA; Wollaston-Hayden EE; Markowski TW; Higgins L; Mashek DG
    J Lipid Res; 2015 Dec; 56(12):2260-72. PubMed ID: 26416795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of protein targeting to lipid droplets: A unified cell biological and biophysical perspective.
    Dhiman R; Caesar S; Thiam AR; Schrul B
    Semin Cell Dev Biol; 2020 Dec; 108():4-13. PubMed ID: 32201131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Lipid Droplet and the Endoplasmic Reticulum.
    Ohsaki Y; Sołtysik K; Fujimoto T
    Adv Exp Med Biol; 2017; 997():111-120. PubMed ID: 28815525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fasting and refeeding induces changes in the mouse hepatic lipid droplet proteome.
    Kramer DA; Quiroga AD; Lian J; Fahlman RP; Lehner R
    J Proteomics; 2018 Jun; 181():213-224. PubMed ID: 29698803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of gene products that control lipid droplet size in yeast using a high-throughput quantitative image analysis.
    Lv X; Liu J; Qin Y; Liu Y; Jin M; Dai J; Chua BT; Yang H; Li P
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Feb; 1864(2):113-127. PubMed ID: 30414449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making Droplet-Embedded Vesicles to Model Cellular Lipid Droplets.
    Chorlay A; Santinho A; Thiam AR
    STAR Protoc; 2020 Dec; 1(3):100116. PubMed ID: 33377012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PUX10 Is a CDC48A Adaptor Protein That Regulates the Extraction of Ubiquitinated Oleosins from Seed Lipid Droplets in Arabidopsis.
    Deruyffelaere C; Purkrtova Z; Bouchez I; Collet B; Cacas JL; Chardot T; Gallois JL; D'Andrea S
    Plant Cell; 2018 Sep; 30(9):2116-2136. PubMed ID: 30087208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Proximity Labeling System to Map the
    Rucks EA; Olson MG; Jorgenson LM; Srinivasan RR; Ouellette SP
    Front Cell Infect Microbiol; 2017; 7():40. PubMed ID: 28261569
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 23.