BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29276112)

  • 1. Tetramethyl ammonium hydroxide production using the microbial electrolysis desalination and chemical-production cell with long anode.
    Ye B; Lu Y; Luo H; Liu G; Zhang R
    Bioresour Technol; 2018 Mar; 251():403-406. PubMed ID: 29276112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved performance of the microbial electrolysis desalination and chemical-production cell with enlarged anode and high applied voltages.
    Ye B; Luo H; Lu Y; Liu G; Zhang R; Li X
    Bioresour Technol; 2017 Nov; 244(Pt 1):913-919. PubMed ID: 28847080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formic acid production using a microbial electrolysis desalination and chemical-production cell.
    Lu Y; Luo H; Yang K; Liu G; Zhang R; Li X; Ye B
    Bioresour Technol; 2017 Nov; 243():118-125. PubMed ID: 28651131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions.
    Chen S; Liu G; Zhang R; Qin B; Luo Y
    Environ Sci Technol; 2012 Feb; 46(4):2467-72. PubMed ID: 22242642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High current density with spatial distribution of Geobacter in anodic biofilm of the microbial electrolysis desalination and chemical-production cell with enlarged volumetric anode.
    Lan J; Ren Y; Luo H; Wang X; Liu G; Zhang R
    Sci Total Environ; 2022 Jul; 831():154798. PubMed ID: 35367555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production.
    Liu G; Zhou Y; Luo H; Cheng X; Zhang R; Teng W
    Bioresour Technol; 2015 Dec; 198():87-93. PubMed ID: 26367771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved performance of the microbial electrolysis desalination and chemical-production cell using the stack structure.
    Chen S; Liu G; Zhang R; Qin B; Luo Y; Hou Y
    Bioresour Technol; 2012 Jul; 116():507-11. PubMed ID: 22608915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance nanofiltration concentrate treatment by a five-chamber bioelectrochemical system.
    Liang J; Zhong F; Lin H; Ma X; Lan J; Ye B; Zhang L
    J Environ Manage; 2023 Oct; 344():118432. PubMed ID: 37393875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages.
    Cui W; Lu Y; Zeng C; Yao J; Liu G; Luo H; Zhang R
    Sci Total Environ; 2021 Aug; 780():146597. PubMed ID: 34030325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial electrolysis desalination and chemical-production cell for CO2 sequestration.
    Zhu X; Logan BE
    Bioresour Technol; 2014 May; 159():24-9. PubMed ID: 24632437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring a highly conductive and super-hydrophilic electrode for biocatalytic performance of microbial electrolysis cells.
    Park SG; Rhee C; Jadhav DA; Eisa T; Al-Mayyahi RB; Shin SG; Abdelkareem MA; Chae KJ
    Sci Total Environ; 2023 Jan; 856(Pt 1):159105. PubMed ID: 36181811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial electrodialysis cell for simultaneous water desalination and hydrogen gas production.
    Mehanna M; Kiely PD; Call DF; Logan BE
    Environ Sci Technol; 2010 Dec; 44(24):9578-83. PubMed ID: 21077623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing the electrode size and arrangement in a microbial electrolysis cell.
    Gil-Carrera L; Mehta P; Escapa A; Morán A; García V; Guiot SR; Tartakovsky B
    Bioresour Technol; 2011 Oct; 102(20):9593-8. PubMed ID: 21875792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-Fed Cathode Microbial Electrolysis Cells with Closely Spaced Electrodes Enables Greatly Improved Performance.
    Rossi R; Baek G; Logan BE
    Environ Sci Technol; 2022 Jan; 56(2):1211-1220. PubMed ID: 34971515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of simultaneous organic carbon and nitrogen removal in microbial fuel cells and microbial electrolysis cells.
    Hussain A; Manuel M; Tartakovsky B
    J Environ Manage; 2016 May; 173():23-33. PubMed ID: 26950500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of anode acclimation strategy on microbial electrolysis cell treating hydrogen fermentation effluent.
    Li X; Zhang R; Qian Y; Angelidaki I; Zhang Y
    Bioresour Technol; 2017 Jul; 236():37-43. PubMed ID: 28390275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linking internal resistance with design and operation decisions in microbial electrolysis cells.
    Miller A; Singh L; Wang L; Liu H
    Environ Int; 2019 May; 126():611-618. PubMed ID: 30856448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities.
    Pasupuleti SB; Srikanth S; Venkata Mohan S; Pant D
    Bioresour Technol; 2015 Nov; 195():131-8. PubMed ID: 26187582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioanode as a limiting factor to biocathode performance in microbial electrolysis cells.
    Lim SS; Yu EH; Daud WRW; Kim BH; Scott K
    Bioresour Technol; 2017 Aug; 238():313-324. PubMed ID: 28454006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.