These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 29276335)
21. On performance of parametric and distribution-free models for zero-inflated and over-dispersed count responses. Tang W; Lu N; Chen T; Wang W; Gunzler DD; Han Y; Tu XM Stat Med; 2015 Oct; 34(24):3235-45. PubMed ID: 26078035 [TBL] [Abstract][Full Text] [Related]
22. Meta-analysis of studies with bivariate binary outcomes: a marginal beta-binomial model approach. Chen Y; Hong C; Ning Y; Su X Stat Med; 2016 Jan; 35(1):21-40. PubMed ID: 26303591 [TBL] [Abstract][Full Text] [Related]
23. Analysis of embryonic development with a model for under- or overdispersion relative to binomial variation. Engel B; te Brake J Biometrics; 1993 Mar; 49(1):269-79. PubMed ID: 8513109 [TBL] [Abstract][Full Text] [Related]
24. A unified approach for analyzing exchangeable binary data with applications to developmental toxicity studies. Dang X; Keeton SL; Peng H Stat Med; 2009 Sep; 28(20):2580-604. PubMed ID: 19548299 [TBL] [Abstract][Full Text] [Related]
25. Bayesian analysis of overdispersed chromosome aberration data with the negative binomial model. Brame RS; Groer PG Radiat Prot Dosimetry; 2002; 102(2):115-9. PubMed ID: 12408487 [TBL] [Abstract][Full Text] [Related]
26. Finite mixture models for proportions. Brooks SP; Morgan BJ; Ridout MS; Pack SE Biometrics; 1997 Sep; 53(3):1097-115. PubMed ID: 9333342 [TBL] [Abstract][Full Text] [Related]
27. Marginalized zero-inflated negative binomial regression with application to dental caries. Preisser JS; Das K; Long DL; Divaris K Stat Med; 2016 May; 35(10):1722-35. PubMed ID: 26568034 [TBL] [Abstract][Full Text] [Related]
28. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes. Westgate PM Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512 [TBL] [Abstract][Full Text] [Related]
29. Regression models for public health surveillance data: a simulation study. Kim H; Kriebel D Occup Environ Med; 2009 Nov; 66(11):733-9. PubMed ID: 19687020 [TBL] [Abstract][Full Text] [Related]
30. Flexible parametrization of variance functions for quantal response data derived from counts. Chen Y; Hanson T J Biopharm Stat; 2017; 27(5):858-868. PubMed ID: 28296567 [TBL] [Abstract][Full Text] [Related]
31. Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Roosa K; Luo R; Chowell G Math Biosci Eng; 2019 May; 16(5):4299-4313. PubMed ID: 31499663 [TBL] [Abstract][Full Text] [Related]
32. On a likelihood-based goodness-of-fit test of the beta-binomial model. Garren ST; Smith RL; Piegorsch WW Biometrics; 2000 Sep; 56(3):947-50. PubMed ID: 10985242 [TBL] [Abstract][Full Text] [Related]
33. Beta-negative binomial nonlinear spatio-temporal random effects modeling of COVID-19 case counts in Japan. Ueki M J Appl Stat; 2023; 50(7):1650-1663. PubMed ID: 37197760 [TBL] [Abstract][Full Text] [Related]
34. Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter. Saha K; Paul S Biometrics; 2005 Mar; 61(1):179-85. PubMed ID: 15737091 [TBL] [Abstract][Full Text] [Related]
35. Estimation of the log-normal mean. Zhou XH Stat Med; 1998 Oct; 17(19):2251-64. PubMed ID: 9802182 [TBL] [Abstract][Full Text] [Related]
36. Using the negative binomial distribution to model overdispersion in ecological count data. Lindén A; Mäntyniemi S Ecology; 2011 Jul; 92(7):1414-21. PubMed ID: 21870615 [TBL] [Abstract][Full Text] [Related]
37. A New Extension of Thinning-Based Integer-Valued Autoregressive Models for Count Data. Liu Z; Zhu F Entropy (Basel); 2020 Dec; 23(1):. PubMed ID: 33396549 [TBL] [Abstract][Full Text] [Related]
38. Overdispersion in modelling accidents on road sections and in empirical bayes estimation. Hauer E Accid Anal Prev; 2001 Nov; 33(6):799-808. PubMed ID: 11579982 [TBL] [Abstract][Full Text] [Related]
39. The bias of the sample proportion following a group sequential phase II clinical trial. Chang MN; Wieand HS; Chang VT Stat Med; 1989 May; 8(5):563-70. PubMed ID: 2727475 [TBL] [Abstract][Full Text] [Related]
40. An empirical approach to determine a threshold for assessing overdispersion in Poisson and negative binomial models for count data. Payne EH; Gebregziabher M; Hardin JW; Ramakrishnan V; Egede LE Commun Stat Simul Comput; 2018 Jul; 47(6):1722-1738. PubMed ID: 30555205 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]