These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 29276664)

  • 1. Subwavelength core/shell cylindrical nanostructures for novel plasmonic and metamaterial devices.
    Kim KH; No YS
    Nano Converg; 2017; 4(1):32. PubMed ID: 29276664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxially Grown Silicon Nanowires with a Gold Molecular Adhesion Layer for Core/Shell Structures with Compact Mie and Plasmon Resonances.
    Murphey CGE; Park JS; Kim S; Cahoon JF
    ACS Nano; 2023 Nov; 17(21):21739-21748. PubMed ID: 37890020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
    Yue Z; Cai B; Wang L; Wang X; Gu M
    Sci Adv; 2016 Mar; 2(3):e1501536. PubMed ID: 27051869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies.
    Fan W; Yan B; Wang Z; Wu L
    Sci Adv; 2016 Aug; 2(8):e1600901. PubMed ID: 27536727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invisible Hyperbolic Metamaterial Nanotube at Visible Frequency.
    Kim KH; No YS; Chang S; Choi JH; Park HG
    Sci Rep; 2015 Nov; 5():16027. PubMed ID: 26522815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noble metal nanowires: from plasmon waveguides to passive and active devices.
    Lal S; Hafner JH; Halas NJ; Link S; Nordlander P
    Acc Chem Res; 2012 Nov; 45(11):1887-95. PubMed ID: 23102053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear terahertz devices utilizing semiconducting plasmonic metamaterials.
    Seren HR; Zhang J; Keiser GR; Maddox SJ; Zhao X; Fan K; Bank SR; Zhang X; Averitt RD
    Light Sci Appl; 2016 May; 5(5):e16078. PubMed ID: 30167165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scalable, Green Fabrication of Single-Crystal Noble Metal Films and Nanostructures for Low-Loss Nanotechnology Applications.
    V Grayli S; Zhang X; MacNab FC; Kamal S; Star D; Leach GW
    ACS Nano; 2020 Jun; 14(6):7581-7592. PubMed ID: 32401491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality.
    Wurtz GA; Pollard R; Hendren W; Wiederrecht GP; Gosztola DJ; Podolskiy VA; Zayats AV
    Nat Nanotechnol; 2011 Feb; 6(2):107-11. PubMed ID: 21258335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong field enhancement and light-matter interactions with all-dielectric metamaterials based on split bar resonators.
    Zhang J; Liu W; Zhu Z; Yuan X; Qin S
    Opt Express; 2014 Dec; 22(25):30889-98. PubMed ID: 25607038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing.
    Dai D; Wu H; Zhang W
    Materials (Basel); 2015 Oct; 8(10):6772-6791. PubMed ID: 28793600
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Negative refraction in semiconductor metamaterials.
    Hoffman AJ; Alekseyev L; Howard SS; Franz KJ; Wasserman D; Podolskiy VA; Narimanov EE; Sivco DL; Gmachl C
    Nat Mater; 2007 Dec; 6(12):946-50. PubMed ID: 17934463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomanipulation and controlled self-assembly of metal nanoparticles and nanocrystals for plasmonics.
    Gwo S; Chen HY; Lin MH; Sun L; Li X
    Chem Soc Rev; 2016 Oct; 45(20):5672-5716. PubMed ID: 27406697
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons.
    Liu PQ; Luxmoore IJ; Mikhailov SA; Savostianova NA; Valmorra F; Faist J; Nash GR
    Nat Commun; 2015 Nov; 6():8969. PubMed ID: 26584781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Silica-Gold Core-Shell Microparticles by Electric Fields Toward Dynamically Tunable Metamaterials.
    Gao H; Xu Y; Yao K; Liu Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14417-14422. PubMed ID: 33728895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.
    Zu S; Han T; Jiang M; Lin F; Zhu X; Fang Z
    ACS Nano; 2018 Apr; 12(4):3908-3916. PubMed ID: 29613764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Core-shell potassium niobate nanowires for enhanced nonlinear optical effects.
    Richter J; Steinbrück A; Zilk M; Sergeyev A; Pertsch T; Tünnermann A; Grange R
    Nanoscale; 2014 May; 6(10):5200-7. PubMed ID: 24675780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Review of Biosensors Based on Plasmonic-Enhanced Processes in the Metallic and Meta-Material-Supported Nanostructures.
    Verma S; Pathak AK; Rahman BMA
    Micromachines (Basel); 2024 Apr; 15(4):. PubMed ID: 38675314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.