BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29276819)

  • 1. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450
    Saab-Rincón G; Alwaseem H; Guzmán-Luna V; Olvera L; Fasan R
    Chembiochem; 2018 Mar; 19(6):622-632. PubMed ID: 29276819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.
    Geronimo I; Denning CA; Rogers WE; Othman T; Huxford T; Heidary DK; Glazer EC; Payne CM
    Biochemistry; 2016 Jun; 55(25):3594-606. PubMed ID: 27267136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hoodwinking Cytochrome P450BM3 into Hydroxylating Non-Native Substrates by Exploiting Its Substrate Misrecognition.
    Shoji O; Aiba Y; Watanabe Y
    Acc Chem Res; 2019 Apr; 52(4):925-934. PubMed ID: 30888147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.
    Milhim M; Gerber A; Neunzig J; Hannemann F; Bernhardt R
    J Biotechnol; 2016 Aug; 231():83-94. PubMed ID: 27238232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of a thermostable cytochrome P450 chimera derived from self-sufficient mesophilic parents.
    Eiben S; Bartelmäs H; Urlacher VB
    Appl Microbiol Biotechnol; 2007 Jul; 75(5):1055-61. PubMed ID: 17468867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The full-length cytochrome P450 enzyme CYP102A1 dimerizes at its reductase domains and has flexible heme domains for efficient catalysis.
    Zhang H; Yokom AL; Cheng S; Su M; Hollenberg PF; Southworth DR; Osawa Y
    J Biol Chem; 2018 May; 293(20):7727-7736. PubMed ID: 29618513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. P450
    Beyer N; Kulig JK; Bartsch A; Hayes MA; Janssen DB; Fraaije MW
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2319-2331. PubMed ID: 27900443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interactions in cytochrome P450BM3: flavin semiquinone intermediates, role of NADP(H), and mechanism of electron transfer by the flavoprotein domain.
    Murataliev MB; Klein M; Fulco A; Feyereisen R
    Biochemistry; 1997 Jul; 36(27):8401-12. PubMed ID: 9204888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox properties of cytochrome p450BM3 measured by direct methods.
    Fleming BD; Tian Y; Bell SG; Wong LL; Urlacher V; Hill HA
    Eur J Biochem; 2003 Oct; 270(20):4082-8. PubMed ID: 14519119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimer Stabilization by SpyTag/SpyCatcher Coupling of the Reductase Domains of a Chimeric P450 BM3 Monooxygenase from Bacillus spp. Improves its Stability, Activity, and Purification.
    Essert A; Castiglione K
    Chembiochem; 2024 Feb; 25(3):e202300650. PubMed ID: 37994193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-sufficient P450-reductase chimeras for biocatalysis.
    Stout CN; Renata H
    Methods Enzymol; 2023; 693():51-71. PubMed ID: 37977738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the applicability of cytochrome P450s and other haemoproteins.
    Ariyasu S; Stanfield JK; Aiba Y; Shoji O
    Curr Opin Chem Biol; 2020 Dec; 59():155-163. PubMed ID: 32781431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystals in Minutes: Instant On-Site Microcrystallisation of Various Flavours of the CYP102A1 (P450BM3) Haem Domain.
    Stanfield JK; Omura K; Matsumoto A; Kasai C; Sugimoto H; Shiro Y; Watanabe Y; Shoji O
    Angew Chem Int Ed Engl; 2020 May; 59(19):7611-7618. PubMed ID: 32157795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for the properties of two single-site proline mutants of CYP102A1 (P450BM3).
    Whitehouse CJ; Yang W; Yorke JA; Rowlatt BC; Strong AJ; Blanford CF; Bell SG; Bartlam M; Wong LL; Rao Z
    Chembiochem; 2010 Dec; 11(18):2549-56. PubMed ID: 21110374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cryo-EM reveals the architecture of the dimeric cytochrome P450 CYP102A1 enzyme and conformational changes required for redox partner recognition.
    Su M; Chakraborty S; Osawa Y; Zhang H
    J Biol Chem; 2020 Feb; 295(6):1637-1645. PubMed ID: 31901079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel haem co-ordination variants of flavocytochrome P450BM3.
    Girvan HM; Toogood HS; Littleford RE; Seward HE; Smith WE; Ekanem IS; Leys D; Cheesman MR; Munro AW
    Biochem J; 2009 Jan; 417(1):65-76. PubMed ID: 18721129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolved CYP102A1 (P450BM3) variants oxidise a range of non-natural substrates and offer new selectivity options.
    Whitehouse CJ; Bell SG; Tufton HG; Kenny RJ; Ogilvie LC; Wong LL
    Chem Commun (Camb); 2008 Feb; (8):966-8. PubMed ID: 18283351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium.
    Chen HC; Swenson RP
    Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3.
    Kitazume T; Takaya N; Nakayama N; Shoun H
    J Biol Chem; 2000 Dec; 275(50):39734-40. PubMed ID: 10995755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.