These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 29276950)
1. Mitochondrial metabolism in early neural fate and its relevance for neuronal disease modeling. Lorenz C; Prigione A Curr Opin Cell Biol; 2017 Dec; 49():71-76. PubMed ID: 29276950 [TBL] [Abstract][Full Text] [Related]
2. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases? Lopes C; Rego AC Mol Neurobiol; 2017 Apr; 54(3):1858-1873. PubMed ID: 26892627 [TBL] [Abstract][Full Text] [Related]
3. Mitochondria in neurogenesis: Implications for mitochondrial diseases. Brunetti D; Dykstra W; Le S; Zink A; Prigione A Stem Cells; 2021 Oct; 39(10):1289-1297. PubMed ID: 34089537 [TBL] [Abstract][Full Text] [Related]
4. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Khacho M; Slack RS Dev Dyn; 2018 Jan; 247(1):47-53. PubMed ID: 28643345 [TBL] [Abstract][Full Text] [Related]
5. Pluripotent stem cell energy metabolism: an update. Teslaa T; Teitell MA EMBO J; 2015 Jan; 34(2):138-53. PubMed ID: 25476451 [TBL] [Abstract][Full Text] [Related]
6. Pluripotent Stem Cells for Uncovering the Role of Mitochondria in Human Brain Function and Dysfunction. Zink A; Priller J; Prigione A J Mol Biol; 2018 Mar; 430(7):891-903. PubMed ID: 29458125 [TBL] [Abstract][Full Text] [Related]
7. Mitochondrial function and dynamics in neural stem cells and neurogenesis: Implications for neurodegenerative diseases. Coelho P; Fão L; Mota S; Rego AC Ageing Res Rev; 2022 Sep; 80():101667. PubMed ID: 35714855 [TBL] [Abstract][Full Text] [Related]
8. Neural stem cell metabolism revisited: a critical role for mitochondria. Scandella V; Petrelli F; Moore DL; Braun SMG; Knobloch M Trends Endocrinol Metab; 2023 Aug; 34(8):446-461. PubMed ID: 37380501 [TBL] [Abstract][Full Text] [Related]
9. Mitochondrial and glycolytic remodeling during nascent neural differentiation of human pluripotent stem cells. Lees JG; Gardner DK; Harvey AJ Development; 2018 Oct; 145(20):. PubMed ID: 30266828 [TBL] [Abstract][Full Text] [Related]
10. Differentiation of Human Neural Stem Cells into Motor Neurons Stimulates Mitochondrial Biogenesis and Decreases Glycolytic Flux. O'Brien LC; Keeney PM; Bennett JP Stem Cells Dev; 2015 Sep; 24(17):1984-94. PubMed ID: 25892363 [TBL] [Abstract][Full Text] [Related]
11. Bioenergetic Profiling of Human Pluripotent Stem Cells. Inak G; Henke MT; Prigione A Methods Mol Biol; 2021; 2277():391-403. PubMed ID: 34080164 [TBL] [Abstract][Full Text] [Related]
12. Mitochondrial function in pluripotent stem cells and cellular reprogramming. Bukowiecki R; Adjaye J; Prigione A Gerontology; 2014; 60(2):174-82. PubMed ID: 24281332 [TBL] [Abstract][Full Text] [Related]
13. Mitochondria as central regulators of neural stem cell fate and cognitive function. Khacho M; Harris R; Slack RS Nat Rev Neurosci; 2019 Jan; 20(1):34-48. PubMed ID: 30464208 [TBL] [Abstract][Full Text] [Related]
14. Neural Stem Cells and Nutrients: Poised Between Quiescence and Exhaustion. Cavallucci V; Fidaleo M; Pani G Trends Endocrinol Metab; 2016 Nov; 27(11):756-769. PubMed ID: 27387597 [TBL] [Abstract][Full Text] [Related]
15. Connecting Mitochondria, Metabolism, and Stem Cell Fate. Wanet A; Arnould T; Najimi M; Renard P Stem Cells Dev; 2015 Sep; 24(17):1957-71. PubMed ID: 26134242 [TBL] [Abstract][Full Text] [Related]
16. A robust vitronectin-derived peptide for the scalable long-term expansion and neuronal differentiation of human pluripotent stem cell (hPSC)-derived neural progenitor cells (hNPCs). Varun D; Srinivasan GR; Tsai YH; Kim HJ; Cutts J; Petty F; Merkley R; Stephanopoulos N; Dolezalova D; Marsala M; Brafman DA Acta Biomater; 2017 Jan; 48():120-130. PubMed ID: 27989923 [TBL] [Abstract][Full Text] [Related]
17. Ascorbic acid alters cell fate commitment of human neural progenitors in a WNT/β-catenin/ROS signaling dependent manner. Rharass T; Lantow M; Gbankoto A; Weiss DG; Panáková D; Lucas S J Biomed Sci; 2017 Oct; 24(1):78. PubMed ID: 29037191 [TBL] [Abstract][Full Text] [Related]
18. Differentiation-Dependent Energy Production and Metabolite Utilization: A Comparative Study on Neural Stem Cells, Neurons, and Astrocytes. Jády AG; Nagy ÁM; Kőhidi T; Ferenczi S; Tretter L; Madarász E Stem Cells Dev; 2016 Jul; 25(13):995-1005. PubMed ID: 27116891 [TBL] [Abstract][Full Text] [Related]
20. Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Mlody B; Lorenz C; Inak G; Prigione A Semin Cell Dev Biol; 2016 Apr; 52():102-9. PubMed ID: 26877213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]