These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29277053)

  • 1. High yielding tropical energy crops for bioenergy production: Effects of plant components, harvest years and locations on biomass composition.
    Surendra KC; Ogoshi R; Zaleski HM; Hashimoto AG; Khanal SK
    Bioresour Technol; 2018 Mar; 251():218-229. PubMed ID: 29277053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic digestion of high-yielding tropical energy crops for biomethane production: Effects of crop types, locations and plant parts.
    Surendra KC; Ogoshi R; Reinhardt-Hanisch A; Oechsner H; Zaleski HM; Hashimoto AG; Khanal SK
    Bioresour Technol; 2018 Aug; 262():194-202. PubMed ID: 29705611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing compositional changes of Napier grass at different stages of growth for biofuel and biobased products potential.
    Takara D; Khanal SK
    Bioresour Technol; 2015; 188():103-8. PubMed ID: 25727997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decentralized biorefinery for lignocellulosic biomass: Integrating anaerobic digestion with thermochemical conversion.
    Sawatdeenarunat C; Nam H; Adhikari S; Sung S; Khanal SK
    Bioresour Technol; 2018 Feb; 250():140-147. PubMed ID: 29161573
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of crop maturity and size reduction on digestibility and methane yield of dedicated energy crop.
    Surendra KC; Khanal SK
    Bioresour Technol; 2015 Feb; 178():187-193. PubMed ID: 25443805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy sorghum--a genetic model for the design of C4 grass bioenergy crops.
    Mullet J; Morishige D; McCormick R; Truong S; Hilley J; McKinley B; Anderson R; Olson SN; Rooney W
    J Exp Bot; 2014 Jul; 65(13):3479-89. PubMed ID: 24958898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion.
    Zhang Y; Ding Z; Shahadat Hossain M; Maurya R; Yang Y; Singh V; Kumar D; Salama ES; Sun X; Sindhu R; Binod P; Zhang Z; Kumar Awasthi M
    Bioresour Technol; 2023 Jan; 367():128281. PubMed ID: 36370945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of size reduction, hydration, and thermal-assisted hydration pretreatment to increase the biogas production from Napier grass and Napier silage.
    Jomnonkhaow U; Sittijunda S; Reungsang A
    Bioresour Technol; 2021 Jul; 331():125034. PubMed ID: 33798860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content.
    Waclawovsky AJ; Sato PM; Lembke CG; Moore PH; Souza GM
    Plant Biotechnol J; 2010 Apr; 8(3):263-76. PubMed ID: 20388126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Manipulating microRNAs for improved biomass and biofuels from plant feedstocks.
    Trumbo JL; Zhang B; Stewart CN
    Plant Biotechnol J; 2015 Apr; 13(3):337-54. PubMed ID: 25707745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review on moringa tree and vetiver grass - Potential biorefinery feedstocks.
    Raman JK; Alves CM; Gnansounou E
    Bioresour Technol; 2018 Feb; 249():1044-1051. PubMed ID: 29146310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical characteristics and biofuels potentials of various plant biomasses: influence of the harvesting date.
    Godin B; Lamaudière S; Agneessens R; Schmit T; Goffart JP; Stilmant D; Gerin PA; Delcarte J
    J Sci Food Agric; 2013 Oct; 93(13):3216-24. PubMed ID: 23553648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of life cycle assessment (LCA) of microalgal and lignocellulosic bioenergy products from thermochemical processes.
    Ubando AT; Rivera DRT; Chen WH; Culaba AB
    Bioresour Technol; 2019 Nov; 291():121837. PubMed ID: 31353166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic complexity of miscanthus cell wall composition and biomass quality for biofuels.
    van der Weijde T; Kamei CLA; Severing EI; Torres AF; Gomez LD; Dolstra O; Maliepaard CA; McQueen-Mason SJ; Visser RGF; Trindade LM
    BMC Genomics; 2017 May; 18(1):406. PubMed ID: 28545405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biogas crops grown in energy crop rotations: Linking chemical composition and methane production characteristics.
    Herrmann C; Idler C; Heiermann M
    Bioresour Technol; 2016 Apr; 206():23-35. PubMed ID: 26836846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defining and engineering bioenergy plant feedstock ideotypes.
    Markel K; Belcher MS; Shih PM
    Curr Opin Biotechnol; 2020 Apr; 62():196-201. PubMed ID: 31841969
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignocellulosic butanol production from Napier grass using semi-simultaneous saccharification fermentation.
    He CR; Kuo YY; Li SY
    Bioresour Technol; 2017 May; 231():101-108. PubMed ID: 28208065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotechnology Towards Energy Crops.
    Margaritopoulou T; Roka L; Alexopoulou E; Christou M; Rigas S; Haralampidis K; Milioni D
    Mol Biotechnol; 2016 Mar; 58(3):149-58. PubMed ID: 26798073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced volatile fatty acids production during anaerobic digestion of lignocellulosic biomass via micro-oxygenation.
    Sawatdeenarunat C; Sung S; Khanal SK
    Bioresour Technol; 2017 Aug; 237():139-145. PubMed ID: 28216003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomass Resources: Agriculture.
    Kluts IN; Brinkman MLJ; de Jong SA; Junginger HM
    Adv Biochem Eng Biotechnol; 2019; 166():13-26. PubMed ID: 28432390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.