These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29277254)
1. A study of the analysis of acidic solutes by hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2018 Jan; 1534():64-74. PubMed ID: 29277254 [TBL] [Abstract][Full Text] [Related]
2. Is hydrophilic interaction chromatography with silica columns a viable alternative to reversed-phase liquid chromatography for the analysis of ionisable compounds? McCalley DV J Chromatogr A; 2007 Nov; 1171(1-2):46-55. PubMed ID: 17931636 [TBL] [Abstract][Full Text] [Related]
3. Study of retention and peak shape in hydrophilic interaction chromatography over a wide pH range. McCalley DV J Chromatogr A; 2015 Sep; 1411():41-9. PubMed ID: 26275863 [TBL] [Abstract][Full Text] [Related]
4. Retention and selectivity effects caused by bonding of a polar urea-type ligand to silica: a study on mixed-mode retention mechanisms and the pivotal role of solute-silanol interactions in the hydrophilic interaction chromatography elution mode. Bicker W; Wu J; Yeman H; Albert K; Lindner W J Chromatogr A; 2011 Feb; 1218(7):882-95. PubMed ID: 21067765 [TBL] [Abstract][Full Text] [Related]
5. Polar silica-based stationary phases. Part I - Singly and doubly layered sorbents consisting of TRIS-silica and chondroitin sulfate A-TRIS-silica for hydrophilic interaction liquid chromatography. Rathnasekara R; El Rassi Z Electrophoresis; 2017 Jun; 38(12):1582-1591. PubMed ID: 28247915 [TBL] [Abstract][Full Text] [Related]
7. Effect of mobile phase additives on solute retention at low aqueous pH in hydrophilic interaction liquid chromatography. McCalley DV J Chromatogr A; 2017 Feb; 1483():71-79. PubMed ID: 28069167 [TBL] [Abstract][Full Text] [Related]
8. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions. Heaton JC; Russell JJ; Underwood T; Boughtflower R; McCalley DV J Chromatogr A; 2014 Jun; 1347():39-48. PubMed ID: 24813934 [TBL] [Abstract][Full Text] [Related]
9. Peptide retention time prediction in hydrophilic interaction liquid chromatography. Comparison of separation selectivity between bare silica and bonded stationary phases. Spicer V; Krokhin OV J Chromatogr A; 2018 Jan; 1534():75-84. PubMed ID: 29306631 [TBL] [Abstract][Full Text] [Related]
10. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography. McCalley DV J Chromatogr A; 2010 May; 1217(20):3408-17. PubMed ID: 20362994 [TBL] [Abstract][Full Text] [Related]
11. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases. Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632 [TBL] [Abstract][Full Text] [Related]
12. A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. Qiao L; Wang S; Li H; Shan Y; Dou A; Shi X; Xu G J Chromatogr A; 2014 Sep; 1360():240-7. PubMed ID: 25129388 [TBL] [Abstract][Full Text] [Related]
13. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography. Rathnasekara R; El Rassi Z J Chromatogr A; 2017 Jul; 1508():24-32. PubMed ID: 28599861 [TBL] [Abstract][Full Text] [Related]
14. Development and evaluation of new imidazolium-based zwitterionic stationary phases for hydrophilic interaction chromatography. Qiao L; Dou A; Shi X; Li H; Shan Y; Lu X; Xu G J Chromatogr A; 2013 Apr; 1286():137-45. PubMed ID: 23489487 [TBL] [Abstract][Full Text] [Related]
15. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography. Aydoğan C; El Rassi Z J Chromatogr A; 2016 May; 1445():55-61. PubMed ID: 27059399 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases. West C; Lesellier E J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536 [TBL] [Abstract][Full Text] [Related]
17. Practical observations on the performance of bare silica in hydrophilic interaction compared with C18 reversed-phase liquid chromatography. Heaton JC; Wang X; Barber WE; Buckenmaier SM; McCalley DV J Chromatogr A; 2014 Feb; 1328():7-15. PubMed ID: 24447467 [TBL] [Abstract][Full Text] [Related]
18. Column selectivity in reversed-phase liquid chromatography. V. Higher metal content (type-A) alkyl-silica columns. Gilroy JJ; Dolan JW; Carr PW; Snyder LR J Chromatogr A; 2004 Feb; 1026(1-2):77-89. PubMed ID: 14763735 [TBL] [Abstract][Full Text] [Related]
19. Retention behavior of peptides in hydrophilic-interaction chromatography. Gilar M; Jaworski A J Chromatogr A; 2011 Dec; 1218(49):8890-6. PubMed ID: 21530976 [TBL] [Abstract][Full Text] [Related]