These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29277330)

  • 1. A Hidden Semi-Markov Model based approach for rehabilitation exercise assessment.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Kyrki V; Monteriù A; Romeo L; Verdini F
    J Biomed Inform; 2018 Feb; 78():1-11. PubMed ID: 29277330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dynamic Time Warping Based Algorithm to Evaluate Kinect-Enabled Home-Based Physical Rehabilitation Exercises for Older People.
    Yu X; Xiong S
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31261746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A general framework for tracking multiple people from a moving camera.
    Choi W; Pantofaru C; Savarese S
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1577-91. PubMed ID: 23681988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rehabilitation Exergames: Use of Motion Sensing and Machine Learning to Quantify Exercise Performance in Healthy Volunteers.
    Haghighi Osgouei R; Soulsby D; Bello F
    JMIR Rehabil Assist Technol; 2020 Aug; 7(2):e17289. PubMed ID: 32808932
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals.
    Yurtman A; Barshan B
    Comput Methods Programs Biomed; 2014 Nov; 117(2):189-207. PubMed ID: 25168775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The KIMORE Dataset: KInematic Assessment of MOvement and Clinical Scores for Remote Monitoring of Physical REhabilitation.
    Capecci M; Ceravolo MG; Ferracuti F; Iarlori S; Monteriu A; Romeo L; Verdini F
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1436-1448. PubMed ID: 31217121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Animated pose templates for modeling and detecting human actions.
    Yao BZ; Nie BX; Liu Z; Zhu SC
    IEEE Trans Pattern Anal Mach Intell; 2014 Mar; 36(3):436-52. PubMed ID: 24457502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-contact versus contact-based sensing methodologies for in-home upper arm robotic rehabilitation.
    Howard A; Brooks D; Brown E; Gebregiorgis A; Chen YP
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650487. PubMed ID: 24187304
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovering motion primitives for unsupervised grouping and one-shot learning of human actions, gestures, and expressions.
    Yang Y; Saleemi I; Shah M
    IEEE Trans Pattern Anal Mach Intell; 2013 Jul; 35(7):1635-48. PubMed ID: 23681992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gesture recognition for interactive exercise programs.
    Perkins J; Pavel M; Jimison HB; Scott S
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():1915-7. PubMed ID: 19163064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generalized Canonical Time Warping.
    Zhou F; De la Torre F
    IEEE Trans Pattern Anal Mach Intell; 2016 Feb; 38(2):279-94. PubMed ID: 26761734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relative Hidden Markov Models for Video-Based Evaluation of Motion Skills in Surgical Training.
    Zhang Q; Li B
    IEEE Trans Pattern Anal Mach Intell; 2015 Jun; 37(6):1206-18. PubMed ID: 26357343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Segmentation of Exercise Repetitions Enabling Real-Time Patient Analysis and Feedback Using a Single Exemplar.
    Sarsfield J; Brown D; Sherkat N; Langensiepen C; Lewis J; Taheri M; Selwood L; Standen P; Logan P
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1004-1019. PubMed ID: 30990184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human movement analysis as a measure for fatigue: a hidden Markov-based approach.
    Karg M; Venture G; Hoey J; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):470-81. PubMed ID: 24445536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An instrumental approach for monitoring physical exercises in a visual markerless scenario: A proof of concept.
    Capecci M; Ceravolo MG; Ferracuti F; Grugnetti M; Iarlori S; Longhi S; Romeo L; Verdini F
    J Biomech; 2018 Mar; 69():70-80. PubMed ID: 29398000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classification of physical activities based on body-segments coordination.
    Fradet L; Marin F
    Comput Biol Med; 2016 Sep; 76():134-42. PubMed ID: 27441831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asynchronous brain computer interface using hidden semi-Markov models.
    Oliver G; Sunehag P; Gedeon T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2728-31. PubMed ID: 23366489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Online Segmentation of Human Motion for Automated Rehabilitation Exercise Analysis.
    Lin JF; Kulić D
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):168-80. PubMed ID: 23661321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmenting Continuous Motions with Hidden Semi-markov Models and Gaussian Processes.
    Nakamura T; Nagai T; Mochihashi D; Kobayashi I; Asoh H; Kaneko M
    Front Neurorobot; 2017; 11():67. PubMed ID: 29311889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humanoid assessing rehabilitative exercises.
    Simonov M; Delconte G
    Methods Inf Med; 2015; 54(2):114-21. PubMed ID: 24986076
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.