These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 29277563)
1. The physiology of Agaricus bisporus in semi-commercial compost cultivation appears to be highly conserved among unrelated isolates. Pontes MVA; Patyshakuliyeva A; Post H; Jurak E; Hildén K; Altelaar M; Heck A; Kabel MA; de Vries RP; Mäkelä MR Fungal Genet Biol; 2018 Mar; 112():12-20. PubMed ID: 29277563 [TBL] [Abstract][Full Text] [Related]
2. Compost bacteria and fungi that influence growth and development of Agaricus bisporus and other commercial mushrooms. Kertesz MA; Thai M Appl Microbiol Biotechnol; 2018 Feb; 102(4):1639-1650. PubMed ID: 29362825 [TBL] [Abstract][Full Text] [Related]
3. Anaerobically digested food waste in compost for Agaricus bisporus and Agaricus subrufescens and its effect on mushroom productivity. Stoknes K; Beyer DM; Norgaard E J Sci Food Agric; 2013 Jul; 93(9):2188-200. PubMed ID: 23371778 [TBL] [Abstract][Full Text] [Related]
6. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts. Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414 [TBL] [Abstract][Full Text] [Related]
7. Diversity and dynamics of the DNA- and cDNA-derived compost fungal communities throughout the commercial cultivation process for Agaricus bisporus. McGee CF; Byrne H; Irvine A; Wilson J Mycologia; 2017; 109(3):475-484. PubMed ID: 28759322 [TBL] [Abstract][Full Text] [Related]
8. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production. Wang L; Mao J; Zhao H; Li M; Wei Q; Zhou Y; Shao H J Ind Microbiol Biotechnol; 2016 Sep; 43(9):1249-60. PubMed ID: 27337959 [TBL] [Abstract][Full Text] [Related]
9. Optimization of the cultivation conditions for mushroom production with European wild strains of Agaricus subrufescens and Brazilian cultivars. Llarena-Hernández CR; Largeteau ML; Ferrer N; Regnault-Roger C; Savoie JM J Sci Food Agric; 2014 Jan; 94(1):77-84. PubMed ID: 23633302 [TBL] [Abstract][Full Text] [Related]
10. Occurrence and function of enzymes for lignocellulose degradation in commercial Agaricus bisporus cultivation. Kabel MA; Jurak E; Mäkelä MR; de Vries RP Appl Microbiol Biotechnol; 2017 Jun; 101(11):4363-4369. PubMed ID: 28466110 [TBL] [Abstract][Full Text] [Related]
11. Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of Agaricus subrufescens during the first two weeks of cultivation. Farnet AM; Qasemian L; Peter-Valence F; Ruaudel F; Savoie JM; Ferré E Bioresour Technol; 2013 Mar; 131():266-73. PubMed ID: 23357087 [TBL] [Abstract][Full Text] [Related]
12. Cultivation of Agaricus bisporus enriched with selenium, zinc and copper. Rzymski P; Mleczek M; Niedzielski P; Siwulski M; Gąsecka M J Sci Food Agric; 2017 Feb; 97(3):923-928. PubMed ID: 27218432 [TBL] [Abstract][Full Text] [Related]
13. Diversity in the ability of Agaricus bisporus wild isolates to fruit at high temperature (25°C). Largeteau ML; Callac P; Navarro-Rodriguez AM; Savoie JM Fungal Biol; 2011 Nov; 115(11):1186-95. PubMed ID: 22036296 [TBL] [Abstract][Full Text] [Related]
14. Compost Grown Agaricus bisporus Lacks the Ability to Degrade and Consume Highly Substituted Xylan Fragments. Jurak E; Patyshakuliyeva A; de Vries RP; Gruppen H; Kabel MA PLoS One; 2015; 10(8):e0134169. PubMed ID: 26237450 [TBL] [Abstract][Full Text] [Related]
15. Lignocellulose utilization and bacterial communities of millet straw based mushroom (Agaricus bisporus) production. Zhang HL; Wei JK; Wang QH; Yang R; Gao XJ; Sang YX; Cai PP; Zhang GQ; Chen QJ Sci Rep; 2019 Feb; 9(1):1151. PubMed ID: 30718596 [TBL] [Abstract][Full Text] [Related]
16. H Vos AM; Jurak E; Pelkmans JF; Herman K; Pels G; Baars JJ; Hendrix E; Kabel MA; Lugones LG; Wösten HAB AMB Express; 2017 Dec; 7(1):124. PubMed ID: 28629207 [TBL] [Abstract][Full Text] [Related]
17. Production of α-1,3-L-arabinofuranosidase active on substituted xylan does not improve compost degradation by Agaricus bisporus. Vos AM; Jurak E; de Gijsel P; Ohm RA; Henrissat B; Lugones LG; Kabel MA; Wösten HAB PLoS One; 2018; 13(7):e0201090. PubMed ID: 30040824 [TBL] [Abstract][Full Text] [Related]
18. Bacterial Community Patterns in the Agaricus bisporus Cultivation System, from Compost Raw Materials to Mushroom Caps. Vieira FR; Pecchia JA Microb Ecol; 2022 Jul; 84(1):20-32. PubMed ID: 34383127 [TBL] [Abstract][Full Text] [Related]
20. An Exploration into the Bacterial Community under Different Pasteurization Conditions during Substrate Preparation (Composting-Phase II) for Agaricus bisporus Cultivation. Vieira FR; Pecchia JA Microb Ecol; 2018 Feb; 75(2):318-330. PubMed ID: 28730353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]