These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
369 related articles for article (PubMed ID: 29277563)
21. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost. Jurak E; Punt AM; Arts W; Kabel MA; Gruppen H PLoS One; 2015; 10(10):e0138909. PubMed ID: 26436656 [TBL] [Abstract][Full Text] [Related]
22. Effect of supplementing compost with grapeseed meal on Agaricus bisporus production. Pardo-Giménez A; Zied DC; Álvarez-Ortí M; Rubio M; Pardo JE J Sci Food Agric; 2012 Jun; 92(8):1665-71. PubMed ID: 22290399 [TBL] [Abstract][Full Text] [Related]
23. Changes in reactive oxygen species production and antioxidant enzyme activity of Agaricus bisporus harvested at different stages of maturity. Liu J; Wu YC; Kan J; Wang Y; Jin CH J Sci Food Agric; 2013 Jul; 93(9):2201-6. PubMed ID: 23339044 [TBL] [Abstract][Full Text] [Related]
25. Impact of a native Streptomyces flavovirens from mushroom compost on green mold control and yield of Agaricus bisporus. Šantrić L; Potočnik I; Radivojević L; Umiljendić JG; Rekanović E; Duduk B; Milijašević-Marčić S J Environ Sci Health B; 2018; 53(10):677-684. PubMed ID: 29775426 [TBL] [Abstract][Full Text] [Related]
26. Accumulation of HT-2 toxin from contaminated mushroom compost by edible Varga E; Soros C; Fodor P; Cserháti M; Sebők R; Kriszt B; Geosel A Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2022 Apr; 39(4):803-816. PubMed ID: 35394401 [TBL] [Abstract][Full Text] [Related]
27. Effect of cultivation practices on the β-glucan content of Agaricus subrufescens basidiocarps. Zied DC; Pardo Giménez A; Pardo González JE; Dias ES; Carvalho MA; Minhoni MT J Agric Food Chem; 2014 Jan; 62(1):41-9. PubMed ID: 24308309 [TBL] [Abstract][Full Text] [Related]
28. Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. Patyshakuliyeva A; Jurak E; Kohler A; Baker A; Battaglia E; de Bruijn W; Burton KS; Challen MP; Coutinho PM; Eastwood DC; Gruben BS; Mäkelä MR; Martin F; Nadal M; van den Brink J; Wiebenga A; Zhou M; Henrissat B; Kabel M; Gruppen H; de Vries RP BMC Genomics; 2013 Sep; 14():663. PubMed ID: 24074284 [TBL] [Abstract][Full Text] [Related]
29. Uncovering the abilities of Agaricus bisporus to degrade plant biomass throughout its life cycle. Patyshakuliyeva A; Post H; Zhou M; Jurak E; Heck AJ; Hildén KS; Kabel MA; Mäkelä MR; Altelaar MA; de Vries RP Environ Microbiol; 2015 Aug; 17(8):3098-109. PubMed ID: 26118398 [TBL] [Abstract][Full Text] [Related]
30. Imidacloprid dissipation, metabolism and accumulation in Agaricus bisporus fruits, casing soil and compost and dietary risk assessment. Zhang Q; Wang X; Rao Q; Chen S; Song W Chemosphere; 2020 Sep; 254():126837. PubMed ID: 32339803 [TBL] [Abstract][Full Text] [Related]
31. The influence of spawn type and strain on yield, size and mushroom solids content of Agaricus bisporus produced on non-composted and spent mushroom compost. Mamiro DP; Royse DJ Bioresour Technol; 2008 May; 99(8):3205-12. PubMed ID: 17761414 [TBL] [Abstract][Full Text] [Related]
32. Biofilm Formation and Synthesis of Antimicrobial Compounds by the Biocontrol Agent Bacillus velezensis QST713 in an Pandin C; Darsonval M; Mayeur C; Le Coq D; Aymerich S; Briandet R Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979839 [No Abstract] [Full Text] [Related]
33. Carbohydrate composition of compost during composting and mycelium growth of Agaricus bisporus. Jurak E; Kabel MA; Gruppen H Carbohydr Polym; 2014 Jan; 101():281-8. PubMed ID: 24299775 [TBL] [Abstract][Full Text] [Related]
34. Pseudomonas sp. UW4 acdS gene promotes primordium initiation and fruiting body development of Agaricus bisporus. Zhang C; Zhang G; Wen Y; Li T; Gao Y; Meng F; Qiu L; Ai Y World J Microbiol Biotechnol; 2019 Oct; 35(11):163. PubMed ID: 31637600 [TBL] [Abstract][Full Text] [Related]
35. Lignin degradation by Agaricus bisporus accounts for a 30% increase in bioavailable holocellulose during cultivation on compost. ten Have R; Wijngaard H; Ariës-Kronenburg NA; Straatsma G; Schaap PJ J Agric Food Chem; 2003 Apr; 51(8):2242-5. PubMed ID: 12670164 [TBL] [Abstract][Full Text] [Related]
36. The North American mushroom competitor, Trichoderma aggressivum f. aggressivum, produces antifungal compounds in mushroom compost that inhibit mycelial growth of the commercial mushroom Agaricus bisporus. Krupke OA; Castle AJ; Rinker DL Mycol Res; 2003 Dec; 107(Pt 12):1467-75. PubMed ID: 15000247 [TBL] [Abstract][Full Text] [Related]
37. Selected wild strains of Agaricus bisporus produce high yields of mushrooms at 25°C. Navarro P; Savoie JM Rev Iberoam Micol; 2015; 32(1):54-8. PubMed ID: 23810787 [TBL] [Abstract][Full Text] [Related]
39. Production of a protease inhibitor from edible mushroom Agaricus bisporus and its statistical optimization by response surface methodology. Vishvakarma R; Mishra A Prep Biochem Biotechnol; 2017 May; 47(5):450-457. PubMed ID: 28140750 [TBL] [Abstract][Full Text] [Related]
40. Cultivation of Pleurotus ostreatus and other edible mushrooms. Sánchez C Appl Microbiol Biotechnol; 2010 Feb; 85(5):1321-37. PubMed ID: 19956947 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]