These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 29277569)
1. Membrane permeabilization design of antimicrobial peptides based on chikungunya virus fusion domain scaffold and its antibacterial activity against gram-positive Streptococcus pneumoniae in respiratory infection. Yang R; Zhang G; Zhang F; Li Z; Huang C Biochimie; 2018 Mar; 146():139-147. PubMed ID: 29277569 [TBL] [Abstract][Full Text] [Related]
2. Molecular design of antimicrobial peptides based on hemagglutinin fusion domain to combat antibiotic resistance in bacterial infection. Ye H J Pept Sci; 2018 Mar; 24(3):. PubMed ID: 29542264 [TBL] [Abstract][Full Text] [Related]
3. Rational design, conformational analysis and membrane-penetrating dynamics study of Bac2A-derived antimicrobial peptides against gram-positive clinical strains isolated from pyemia. Bai X; Chen X J Theor Biol; 2019 Jul; 473():44-51. PubMed ID: 30917919 [TBL] [Abstract][Full Text] [Related]
4. Rationally designed antimicrobial peptides: Insight into the mechanism of eleven residue peptides against microbial infections. Pandit G; Biswas K; Ghosh S; Debnath S; Bidkar AP; Satpati P; Bhunia A; Chatterjee S Biochim Biophys Acta Biomembr; 2020 Apr; 1862(4):183177. PubMed ID: 31954105 [TBL] [Abstract][Full Text] [Related]
5. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
6. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
8. Molecular dynamics simulation of the membrane binding and disruption mechanisms by antimicrobial scorpion venom-derived peptides. Velasco-Bolom JL; Corzo G; Garduño-Juárez R J Biomol Struct Dyn; 2018 Jun; 36(8):2070-2084. PubMed ID: 28604248 [TBL] [Abstract][Full Text] [Related]
9. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
10. Interaction studies of novel cell selective antimicrobial peptides with model membranes and E. coli ATCC 11775. Joshi S; Bisht GS; Rawat DS; Kumar A; Kumar R; Maiti S; Pasha S Biochim Biophys Acta; 2010 Oct; 1798(10):1864-75. PubMed ID: 20599694 [TBL] [Abstract][Full Text] [Related]
11. Dermaseptin S9, an alpha-helical antimicrobial peptide with a hydrophobic core and cationic termini. Lequin O; Ladram A; Chabbert L; Bruston F; Convert O; Vanhoye D; Chassaing G; Nicolas P; Amiche M Biochemistry; 2006 Jan; 45(2):468-80. PubMed ID: 16401077 [TBL] [Abstract][Full Text] [Related]
12. In vitro activity of novel in silico-developed antimicrobial peptides against a panel of bacterial pathogens. Romani AA; Baroni MC; Taddei S; Ghidini F; Sansoni P; Cavirani S; Cabassi CS J Pept Sci; 2013 Sep; 19(9):554-65. PubMed ID: 23893489 [TBL] [Abstract][Full Text] [Related]
13. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related]
14. Hybrids made from antimicrobial peptides with different mechanisms of action show enhanced membrane permeabilization. Wade HM; Darling LEO; Elmore DE Biochim Biophys Acta Biomembr; 2019 Oct; 1861(10):182980. PubMed ID: 31067436 [TBL] [Abstract][Full Text] [Related]
15. Sarkosyl-Induced Helical Structure of an Antimicrobial Peptide GW-Q6 Plays an Essential Role in the Binding of Surface Receptor OprI in Pseudomonas aeruginosa. Tseng TS; Wang SH; Chang TW; Wei HM; Wang YJ; Tsai KC; Liao YD; Chen C PLoS One; 2016; 11(10):e0164597. PubMed ID: 27727309 [TBL] [Abstract][Full Text] [Related]
16. Computational design of the helical hairpin structure of membrane-active antibacterial peptides based on RSV glycoprotein epitope scaffold. Fu J; Yang H; Wang J Comput Biol Chem; 2018 Apr; 73():200-205. PubMed ID: 29499459 [TBL] [Abstract][Full Text] [Related]
17. The C-Terminal VPRTES Tail of LL-37 Influences the Mode of Attachment to a Lipid Bilayer and Antimicrobial Activity. de Miguel Catalina A; Forbrig E; Kozuch J; Nehls C; Paulowski L; Gutsmann T; Hildebrandt P; Mroginski MA Biochemistry; 2019 May; 58(19):2447-2462. PubMed ID: 31016971 [TBL] [Abstract][Full Text] [Related]
18. Salt-resistant short antimicrobial peptides. Mohanram H; Bhattacharjya S Biopolymers; 2016 May; 106(3):345-56. PubMed ID: 26849911 [TBL] [Abstract][Full Text] [Related]
19. Enhancement of the direct antimicrobial activity of Lysep3 against Escherichia coli by inserting cationic peptides into its C terminus. Ma Q; Guo Z; Gao C; Zhu R; Wang S; Yu L; Qin W; Xia X; Gu J; Yan G; Lei L Antonie Van Leeuwenhoek; 2017 Mar; 110(3):347-355. PubMed ID: 27943012 [TBL] [Abstract][Full Text] [Related]
20. Antimicrobial Peptide Simulations and the Influence of Force Field on the Free Energy for Pore Formation in Lipid Bilayers. Bennett WF; Hong CK; Wang Y; Tieleman DP J Chem Theory Comput; 2016 Sep; 12(9):4524-33. PubMed ID: 27529120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]