BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29277640)

  • 21. Selective detection and characterization of nanoparticles from motor vehicles.
    Johnston MV; Klems JP; Zordan CA; Pennington MR; Smith JN;
    Res Rep Health Eff Inst; 2013 Feb; (173):3-45. PubMed ID: 23614271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sizing lipid droplets from adult and geriatric mouse liver tissue via nanoparticle tracking analysis.
    Muratore KA; Najt CP; Livezey NM; Marti J; Mashek DG; Arriaga EA
    Anal Bioanal Chem; 2018 Jun; 410(16):3629-3638. PubMed ID: 29663061
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Method validation of nanoparticle tracking analysis to measure pulmonary nanoparticle content: the size distribution in exhaled breath condensate depends on occupational exposure.
    Sauvain JJ; Suarez G; Edmé JL; Bezerra OM; Silveira KG; Amaral LS; Carneiro AP; Chérot-Kornobis N; Sobaszek A; Hulo S
    J Breath Res; 2017 Jan; 11(1):016010. PubMed ID: 28054515
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology.
    Singh P; Bodycomb J; Travers B; Tatarkiewicz K; Travers S; Matyas GR; Beck Z
    Int J Pharm; 2019 Jul; 566():680-686. PubMed ID: 31176851
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Critical parameters to standardize the size and concentration determination of nanomaterials by nanoparticle tracking analysis.
    Tian Y; Tian D; Peng X; Qiu H
    Int J Pharm; 2024 May; 656():124097. PubMed ID: 38609058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Single particle inductively coupled plasma-mass spectrometry: a performance evaluation and method comparison in the determination of nanoparticle size.
    Pace HE; Rogers NJ; Jarolimek C; Coleman VA; Gray EP; Higgins CP; Ranville JF
    Environ Sci Technol; 2012 Nov; 46(22):12272-80. PubMed ID: 22780106
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrochemical impacts complement light scattering techniques for in situ nanoparticle sizing.
    Xie R; Batchelor-McAuley C; Young NP; Compton RG
    Nanoscale; 2019 Jan; 11(4):1720-1727. PubMed ID: 30623944
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pitfalls and novel applications of particle sizing by dynamic light scattering.
    Fischer K; Schmidt M
    Biomaterials; 2016 Aug; 98():79-91. PubMed ID: 27179435
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-Resolution Nanoparticle Sizing with Maximum A Posteriori Nanoparticle Tracking Analysis.
    Silmore KS; Gong X; Strano MS; Swan JW
    ACS Nano; 2019 Apr; 13(4):3940-3952. PubMed ID: 30856320
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques.
    Bartczak D; Vincent P; Goenaga-Infante H
    Anal Chem; 2015 Jun; 87(11):5482-5. PubMed ID: 25970520
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of Nanoparticle Tracking Analysis for the Detection of Rod-Shaped Particles and Protein Aggregates.
    Hoover BM; Murphy RM
    J Pharm Sci; 2020 Jan; 109(1):452-463. PubMed ID: 31604086
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiple consecutive recapture of rigid nanoparticles using a solid-state nanopore sensor.
    Lee JS; Peng B; Sabuncu AC; Nam S; Ahn C; Kim MJ; Kim M
    Electrophoresis; 2018 Mar; 39(5-6):833-843. PubMed ID: 29125659
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Flow speed alters the apparent size and concentration of particles measured using NanoSight nanoparticle tracking analysis.
    Tong M; Brown OS; Stone PR; Cree LM; Chamley LW
    Placenta; 2016 Feb; 38():29-32. PubMed ID: 26907379
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification and characterization of virus-like particles by size-exclusion chromatography and nanoparticle tracking analysis.
    Steppert P; Burgstaller D; Klausberger M; Tover A; Berger E; Jungbauer A
    J Chromatogr A; 2017 Mar; 1487():89-99. PubMed ID: 28110946
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Measuring absolute number concentrations of nanoparticles using single-particle tracking.
    Röding M; Deschout H; Braeckmans K; Rudemo M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031920. PubMed ID: 22060416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The application of STEP-technology® for particle and protein dispersion detection studies in biopharmaceutical research.
    Gross-Rother J; Herrmann N; Blech M; Pinnapireddy SR; Garidel P; Bakowsky U
    Int J Pharm; 2018 May; 543(1-2):257-268. PubMed ID: 29604370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A robust and easily reproducible protocol for the determination of size and size distribution of iron sucrose using dynamic light scattering.
    Di Francesco T; Borchard G
    J Pharm Biomed Anal; 2018 Apr; 152():89-93. PubMed ID: 29414023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of NMR and Dynamic Light Scattering for Measuring Diffusion Coefficients of Formulated Insulin: Implications for Particle Size Distribution Measurements in Drug Products.
    Patil SM; Keire DA; Chen K
    AAPS J; 2017 Nov; 19(6):1760-1766. PubMed ID: 28791599
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validity of particle size analysis techniques for measurement of the attrition that occurs during vacuum agitated powder drying of needle-shaped particles.
    Hamilton P; Littlejohn D; Nordon A; Sefcik J; Slavin P
    Analyst; 2012 Jan; 137(1):118-25. PubMed ID: 22068605
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection.
    Gast M; Sobek H; Mizaikoff B
    Hum Gene Ther Methods; 2019 Dec; 30(6):235-244. PubMed ID: 31760805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.