These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 29277739)

  • 1. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis.
    Vanderfleet OM; Osorio DA; Cranston ED
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis.
    Rana MS; Rahim MA; Mosharraf MP; Tipu MFK; Chowdhury JA; Haque MR; Kabir S; Amran MS; Chowdhury AA
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
    Reid MS; Villalobos M; Cranston ED
    Langmuir; 2017 Feb; 33(7):1583-1598. PubMed ID: 27959566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs.
    Gong J; Mo L; Li J
    Carbohydr Polym; 2018 Sep; 195():18-28. PubMed ID: 29804966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of cellulose nanocrystals from pueraria root residue.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li S; Ma Y; Liu M; Luo S
    Int J Biol Macromol; 2019 May; 129():1081-1089. PubMed ID: 30009914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis.
    Kusmono ; Listyanda RF; Wildan MW; Ilman MN
    Heliyon; 2020 Nov; 6(11):e05486. PubMed ID: 33235939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.
    Huang S; Zhou L; Li MC; Wu Q; Zhou D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.
    Arrieta MP; Fortunati E; Dominici F; Rayón E; López J; Kenny JM
    Carbohydr Polym; 2014 Jul; 107():16-24. PubMed ID: 24702913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
    Camarero Espinosa S; Kuhnt T; Foster EJ; Weder C
    Biomacromolecules; 2013 Apr; 14(4):1223-30. PubMed ID: 23458473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose.
    Wang H; Wu J; Lian Y; Li Y; Huang B; Lu Q
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy.
    Goswami A; Alam KM; Kumar P; Kar P; Thundat T; Shankar K
    Carbohydr Polym; 2020 Oct; 246():116393. PubMed ID: 32747225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge.
    Jordan JH; Easson MW; Condon BD
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.
    Tang LR; Huang B; Ou W; Chen XR; Chen YD
    Bioresour Technol; 2011 Dec; 102(23):10973-7. PubMed ID: 21993330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between Structural Characteristics of Cellulose Nanocrystals Obtained from Kraft Pulp.
    Aguayo MG; Fernández-Pérez A; Oviedo C; Reyes G; Reyes-Contreras P
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32911746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Simultaneous Production of Two Distinct Types of Cellulose Nanocrystals.
    Chen Z; Xu HN; Ouyang XK
    Langmuir; 2022 May; 38(19):5996-6003. PubMed ID: 35522966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.