BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

312 related articles for article (PubMed ID: 29277739)

  • 1. Optimization of cellulose nanocrystal length and surface charge density through phosphoric acid hydrolysis.
    Vanderfleet OM; Osorio DA; Cranston ED
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter.
    Hemmati F; Jafari SM; Taheri RA
    Int J Biol Macromol; 2019 Sep; 137():374-381. PubMed ID: 31271799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphological, Spectroscopic and Thermal Analysis of Cellulose Nanocrystals Extracted from Waste Jute Fiber by Acid Hydrolysis.
    Rana MS; Rahim MA; Mosharraf MP; Tipu MFK; Chowdhury JA; Haque MR; Kabir S; Amran MS; Chowdhury AA
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents.
    Abitbol T; Palermo A; Moran-Mirabal JM; Cranston ED
    Biomacromolecules; 2013 Sep; 14(9):3278-84. PubMed ID: 23952644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Obtainment and characterization of nanocellulose from an unwoven industrial textile cotton waste: Effect of acid hydrolysis conditions.
    Maciel MMÁD; Benini KCCC; Voorwald HJC; Cioffi MOH
    Int J Biol Macromol; 2019 Apr; 126():496-506. PubMed ID: 30593806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production.
    Reid MS; Villalobos M; Cranston ED
    Langmuir; 2017 Feb; 33(7):1583-1598. PubMed ID: 27959566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study on the preparation and characterization of cellulose nanocrystals with various polymorphs.
    Gong J; Mo L; Li J
    Carbohydr Polym; 2018 Sep; 195():18-28. PubMed ID: 29804966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of cellulose nanocrystals from pueraria root residue.
    Wang Z; Yao Z; Zhou J; He M; Jiang Q; Li S; Ma Y; Liu M; Luo S
    Int J Biol Macromol; 2019 May; 129():1081-1089. PubMed ID: 30009914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of cellulose nanocrystal extracted from ramie fibers by sulfuric acid hydrolysis.
    Kusmono ; Listyanda RF; Wildan MW; Ilman MN
    Heliyon; 2020 Nov; 6(11):e05486. PubMed ID: 33235939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Nanocrystals (CNCs) from Corn Stalk: Activation Energy Analysis.
    Huang S; Zhou L; Li MC; Wu Q; Zhou D
    Materials (Basel); 2017 Jan; 10(1):. PubMed ID: 28772441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional PLA-PHB/cellulose nanocrystal films: processing, structural and thermal properties.
    Arrieta MP; Fortunati E; Dominici F; Rayón E; López J; Kenny JM
    Carbohydr Polym; 2014 Jul; 107():16-24. PubMed ID: 24702913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis.
    Camarero Espinosa S; Kuhnt T; Foster EJ; Weder C
    Biomacromolecules; 2013 Apr; 14(4):1223-30. PubMed ID: 23458473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose.
    Wang H; Wu J; Lian Y; Li Y; Huang B; Lu Q
    Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping the surface potential, charge density and adhesion of cellulose nanocrystals using advanced scanning probe microscopy.
    Goswami A; Alam KM; Kumar P; Kar P; Thundat T; Shankar K
    Carbohydr Polym; 2020 Oct; 246():116393. PubMed ID: 32747225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films.
    Oun AA; Rhim JW
    Carbohydr Polym; 2015 Dec; 134():20-9. PubMed ID: 26428095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Order and gelation of cellulose nanocrystal suspensions: an overview of some issues.
    Gray DG
    Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2112):. PubMed ID: 29277736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alkali Hydrolysis of Sulfated Cellulose Nanocrystals: Optimization of Reaction Conditions and Tailored Surface Charge.
    Jordan JH; Easson MW; Condon BD
    Nanomaterials (Basel); 2019 Aug; 9(9):. PubMed ID: 31480286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose.
    Tang LR; Huang B; Ou W; Chen XR; Chen YD
    Bioresour Technol; 2011 Dec; 102(23):10973-7. PubMed ID: 21993330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between Structural Characteristics of Cellulose Nanocrystals Obtained from Kraft Pulp.
    Aguayo MG; Fernández-Pérez A; Oviedo C; Reyes G; Reyes-Contreras P
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32911746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Simultaneous Production of Two Distinct Types of Cellulose Nanocrystals.
    Chen Z; Xu HN; Ouyang XK
    Langmuir; 2022 May; 38(19):5996-6003. PubMed ID: 35522966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.