BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29277993)

  • 21. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-Assembled Nanomaterials Based on Complementary Sn(IV) and Zn(II)-Porphyrins, and Their Photocatalytic Degradation for Rhodamine B Dye.
    Shee NK; Kim HJ
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208402
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regioisomer-Directed Self-Assembly of Alternating Copolymers for Highly Enhanced Photocatalytic H
    Zhang C; Pan H; Chen C; Zhou Y
    ACS Macro Lett; 2022 Apr; 11(4):434-440. PubMed ID: 35575321
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Discrete cyclic porphyrin arrays as artificial light-harvesting antenna.
    Aratani N; Kim D; Osuka A
    Acc Chem Res; 2009 Dec; 42(12):1922-34. PubMed ID: 19842697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing Visible-Light Photocatalysis with Pd(II) Porphyrin-Based TiO
    Malec D; Warszyńska M; Repetowski P; Siomchen A; Dąbrowski JM
    Molecules; 2023 Nov; 28(23):. PubMed ID: 38067548
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and photophysical properties of porphyrin-modified metal nanoclusters with different chain lengths.
    Imahori H; Kashiwagi Y; Endo Y; Hanada T; Nishimura Y; Yamazaki I; Araki Y; Ito O; Fukuzumi S
    Langmuir; 2004 Jan; 20(1):73-81. PubMed ID: 15745002
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolution of various porphyrin nanostructures via an oil/aqueous medium: controlled self-assembly, further organization, and supramolecular chirality.
    Qiu Y; Chen P; Liu M
    J Am Chem Soc; 2010 Jul; 132(28):9644-52. PubMed ID: 20578772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Porphyrin-Based Nanomaterials for the Photocatalytic Remediation of Wastewater: Recent Advances and Perspectives.
    Shee NK; Kim HJ
    Molecules; 2024 Jan; 29(3):. PubMed ID: 38338355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.
    Ensslen P; Wagenknecht HA
    Acc Chem Res; 2015 Oct; 48(10):2724-33. PubMed ID: 26411920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surfactant-assisted porphyrin based hierarchical nano/micro assemblies and their efficient photocatalytic behavior.
    Mandal S; Nayak SK; Mallampalli S; Patra A
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):130-6. PubMed ID: 24344739
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembled nanoscale DNA-porphyrin complex for artificial light harvesting.
    Woller JG; Hannestad JK; Albinsson B
    J Am Chem Soc; 2013 Feb; 135(7):2759-68. PubMed ID: 23350631
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomimetic Approach toward Visible Light-Driven Hydrogen Generation Based on a Porphyrin-Based Coordination Polymer Gel.
    Verma P; Samanta D; Sutar P; Kundu A; Dasgupta J; Maji TK
    ACS Appl Mater Interfaces; 2023 May; 15(21):25173-25183. PubMed ID: 36449661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rational syntheses of cyclic hexameric porphyrin arrays for studies of self-assembling light-harvesting systems.
    Yu L; Lindsey JS
    J Org Chem; 2001 Nov; 66(22):7402-19. PubMed ID: 11681955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-dimensional artificial light-harvesting antennae with predesigned high-order structure and robust photosensitising activity.
    Feng X; Ding X; Chen L; Wu Y; Liu L; Addicoat M; Irle S; Dong Y; Jiang D
    Sci Rep; 2016 Sep; 6():32944. PubMed ID: 27622274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Bioinspired Self-Assembly of Metalloporphyrins and Polyelectrolytes into Hierarchical Supramolecular Nanostructures for Enhanced Photocatalytic H
    Tang Q; Han Y; Chen L; Qi Q; Yu J; Yu SB; Yang B; Wang HY; Zhang J; Xie SH; Tian F; Xie Z; Jiang H; Ke Y; Yang G; Li ZT; Tian J
    Angew Chem Int Ed Engl; 2024 Feb; 63(8):e202315599. PubMed ID: 38169100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-assembly of zinc cadmium sulfide nanorods into nanoflowers with enhanced photocatalytic hydrogen production activity.
    Jin Z; Liu Y; Hao X
    J Colloid Interface Sci; 2020 May; 567():357-368. PubMed ID: 32065910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 1D alignment of Co(II) metalated porphyrin-napthalimide based self-assembled nanowires for photocatalytic hydrogen evolution.
    Bhavani B; Chanda N; Kotha V; Reddy G; Basak P; Pal U; Giribabu L; Prasanthkumar S
    Nanoscale; 2021 Dec; 14(1):140-146. PubMed ID: 34904615
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphology-controlled self-assembled nanostructures of 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin derivatives. Effect of metal-ligand coordination bonding on tuning the intermolecular interaction.
    Gao Y; Zhang X; Ma C; Li X; Jiang J
    J Am Chem Soc; 2008 Dec; 130(50):17044-52. PubMed ID: 19007122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impact of metal ions in porphyrin-based applied materials for visible-light photocatalysis: key information from ultrafast electronic spectroscopy.
    Kar P; Sardar S; Alarousu E; Sun J; Seddigi ZS; Ahmed SA; Danish EY; Mohammed OF; Pal SK
    Chemistry; 2014 Aug; 20(33):10475-83. PubMed ID: 25044047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.