BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 29277996)

  • 1. A Structural and Functional Role for Disulfide Bonds in a Class II Hydrophobin.
    Sallada ND; Dunn KJ; Berger BW
    Biochemistry; 2018 Feb; 57(5):645-653. PubMed ID: 29277996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The functional role of Cys3-Cys4 loop in hydrophobin HGFI.
    Niu B; Gong Y; Gao X; Xu H; Qiao M; Li W
    Amino Acids; 2014 Nov; 46(11):2615-25. PubMed ID: 25240738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional role of the disulfide bridges in the hydrophobin SC3.
    de Vocht ML; Reviakine I; Wösten HA; Brisson A; Wessels JG; Robillard GT
    J Biol Chem; 2000 Sep; 275(37):28428-32. PubMed ID: 10829014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure and interface-driven self-assembly of NC2, a new member of the Class II hydrophobin proteins.
    Ren Q; Kwan AH; Sunde M
    Proteins; 2014 Jun; 82(6):990-1003. PubMed ID: 24218020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII.
    Grunér MS; Paananen A; Szilvay GR; Linder MB
    Colloids Surf B Biointerfaces; 2017 Jul; 155():111-117. PubMed ID: 28415028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the role hydrophobin monomer loops using hybrid models via molecular dynamics simulation.
    Chang HJ; Lee M; Na S
    Colloids Surf B Biointerfaces; 2019 Jan; 173():128-138. PubMed ID: 30278361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behavior of Trichoderma reesei hydrophobins in solution: interactions, dynamics, and multimer formation.
    Szilvay GR; Nakari-Setälä T; Linder MB
    Biochemistry; 2006 Jul; 45(28):8590-8. PubMed ID: 16834333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity.
    Wang X; Song D; Wang B; Yang J; Ge L; Zhao L; Xu H; Qiao M
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8419-8430. PubMed ID: 29075828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Fungal Hydrophobin Towards Using in Industry.
    Khalesi M; Gebruers K; Derdelinckx G
    Protein J; 2015 Aug; 34(4):243-55. PubMed ID: 26208665
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-based engineering of hydrophobin HFBI: effect on interfacial assembly and interactions.
    Lienemann M; Grunér MS; Paananen A; Siika-Aho M; Linder MB
    Biomacromolecules; 2015 Apr; 16(4):1283-92. PubMed ID: 25724119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction and comparison of a class I hydrophobin from Schizophyllum commune and class II hydrophobins from Trichoderma reesei.
    Askolin S; Linder M; Scholtmeijer K; Tenkanen M; Penttilä M; de Vocht ML; Wösten HA
    Biomacromolecules; 2006 Apr; 7(4):1295-301. PubMed ID: 16602752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing.
    Seidl-Seiboth V; Gruber S; Sezerman U; Schwecke T; Albayrak A; Neuhof T; von Döhren H; Baker SE; Kubicek CP
    J Mol Evol; 2011 Apr; 72(4):339-51. PubMed ID: 21424760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z
    J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins that Form Functional Amyloids in Fungi.
    Pham CLL; Rodríguez de Francisco B; Valsecchi I; Dazzoni R; Pillé A; Lo V; Ball SR; Cappai R; Wien F; Kwan AH; Guijarro JI; Sunde M
    J Mol Biol; 2018 Oct; 430(20):3784-3801. PubMed ID: 30096347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous expression of a hydrophobin HFB1 and evaluation of its contribution to producing stable foam.
    Lohrasbi-Nejad A; Torkzadeh-Mahani M; Hosseinkhani S
    Protein Expr Purif; 2016 Feb; 118():25-30. PubMed ID: 26431799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.
    Niu B; Li B; Wang H; Guo R; Xu H; Qiao M; Li W
    Colloids Surf B Biointerfaces; 2017 Feb; 150():344-351. PubMed ID: 27842929
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective isolation of hydrophobin SC3 by solid-phase extraction with polytetrafluoroethylene microparticles and subsequent mass spectrometric analysis.
    Kupčík R; Zelená M; Řehulka P; Bílková Z; Česlová L
    J Sep Sci; 2016 Feb; 39(4):717-24. PubMed ID: 26608781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomistic simulation of hydrophobin HFBII conformation in aqueous and fluorous media and at the water/vacuum interface.
    Raffaini G; Milani R; Ganazzoli F; Resnati G; Metrangolo P
    J Mol Graph Model; 2016 Jan; 63():8-14. PubMed ID: 26606320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-assembled hydrophobin protein films at the air-water interface: structural analysis and molecular engineering.
    Szilvay GR; Paananen A; Laurikainen K; Vuorimaa E; Lemmetyinen H; Peltonen J; Linder MB
    Biochemistry; 2007 Mar; 46(9):2345-54. PubMed ID: 17297923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantifying biomolecular hydrophobicity: Single molecule force spectroscopy of class II hydrophobins.
    Paananen A; Weich S; Szilvay GR; Leitner M; Tappura K; Ebner A
    J Biol Chem; 2021; 296():100728. PubMed ID: 33933454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.