BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29278411)

  • 1. Perfusion applied to a 3D model of bone metastasis results in uniformly dispersed mechanical stimuli.
    Liu B; Han S; Hedrick BP; Modarres-Sadeghi Y; Lynch ME
    Biotechnol Bioeng; 2018 Apr; 115(4):1076-1085. PubMed ID: 29278411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of fluid shear stress in bone tissue engineering scaffolds with spherical and cubical pore architectures.
    Zhao F; Vaughan TJ; McNamara LM
    Biomech Model Mechanobiol; 2016 Jun; 15(3):561-77. PubMed ID: 26224148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro.
    Zhao F; van Rietbergen B; Ito K; Hofmann S
    J Biomech; 2018 Oct; 79():232-237. PubMed ID: 30149981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphysics simulation of a compression-perfusion combined bioreactor to predict the mechanical microenvironment during bone metastatic breast cancer loading experiments.
    Liu B; Han S; Modarres-Sadeghi Y; Lynch ME
    Biotechnol Bioeng; 2021 May; 118(5):1779-1792. PubMed ID: 33491767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparative study of shear stresses in collagen-glycosaminoglycan and calcium phosphate scaffolds in bone tissue-engineering bioreactors.
    Jungreuthmayer C; Donahue SW; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Tissue Eng Part A; 2009 May; 15(5):1141-9. PubMed ID: 18831686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A three-dimensional computational fluid dynamics model of shear stress distribution during neotissue growth in a perfusion bioreactor.
    Guyot Y; Luyten FP; Schrooten J; Papantoniou I; Geris L
    Biotechnol Bioeng; 2015 Dec; 112(12):2591-600. PubMed ID: 26059101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of titanium dioxide scaffold with commercial bone graft materials through micro-finite element modelling in flow perfusion.
    Zhang X; Tiainen H; Haugen HJ
    Med Biol Eng Comput; 2019 Jan; 57(1):311-324. PubMed ID: 30117067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical Study of Granular Scaffold Efficiency to Convert Fluid Flow into Mechanical Stimulation in Bone Tissue Engineering.
    Cruel M; Bensidhoum M; Nouguier-Lehon C; Dessombz O; Becquart P; Petite H; Hoc T
    Tissue Eng Part C Methods; 2015 Sep; 21(9):863-71. PubMed ID: 25634115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A multiscale computational fluid dynamics approach to simulate the micro-fluidic environment within a tissue engineering scaffold with highly irregular pore geometry.
    Zhao F; Melke J; Ito K; van Rietbergen B; Hofmann S
    Biomech Model Mechanobiol; 2019 Dec; 18(6):1965-1977. PubMed ID: 31201621
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.
    Jungreuthmayer C; Jaasma MJ; Al-Munajjed AA; Zanghellini J; Kelly DJ; O'Brien FJ
    Med Eng Phys; 2009 May; 31(4):420-7. PubMed ID: 19109048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-computed tomography based computational fluid dynamics for the determination of shear stresses in scaffolds within a perfusion bioreactor.
    Zermatten E; Vetsch JR; Ruffoni D; Hofmann S; Müller R; Steinfeld A
    Ann Biomed Eng; 2014 May; 42(5):1085-94. PubMed ID: 24492950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of permeability of regular scaffolds for skeletal tissue engineering: a combined computational and experimental study.
    Truscello S; Kerckhofs G; Van Bael S; Pyka G; Schrooten J; Van Oosterwyck H
    Acta Biomater; 2012 Apr; 8(4):1648-58. PubMed ID: 22210520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porosity and surface curvature effects on the permeability and wall shear stress of trabecular bone: Guidelines for biomimetic scaffolds for bone repair.
    Xiong Z; Rouquier L; Huang X; Potier E; Bensidhoum M; Hoc T
    Comput Biol Med; 2024 Jul; 177():108630. PubMed ID: 38781643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational fluid dynamics analysis of the fluid environment of 3D printed gradient structure in interfacial tissue engineering.
    Zhang B
    Med Eng Phys; 2024 Jun; 128():104173. PubMed ID: 38789213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying shear stress to endothelial cells in a new perfusion chamber: hydrodynamic analysis.
    Anisi F; Salehi-Nik N; Amoabediny G; Pouran B; Haghighipour N; Zandieh-Doulabi B
    J Artif Organs; 2014 Dec; 17(4):329-36. PubMed ID: 25213200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Darcian permeability constant as indicator for shear stresses in regular scaffold systems for tissue engineering.
    Vossenberg P; Higuera GA; van Straten G; van Blitterswijk CA; van Boxtel AJ
    Biomech Model Mechanobiol; 2009 Dec; 8(6):499-507. PubMed ID: 19360445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale fluid-structure interaction modelling to determine the mechanical stimulation of bone cells in a tissue engineered scaffold.
    Zhao F; Vaughan TJ; Mcnamara LM
    Biomech Model Mechanobiol; 2015 Apr; 14(2):231-43. PubMed ID: 24903125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational modelling of the mechanical environment of osteogenesis within a polylactic acid-calcium phosphate glass scaffold.
    Milan JL; Planell JA; Lacroix D
    Biomaterials; 2009 Sep; 30(25):4219-26. PubMed ID: 19477510
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical accuracy comparison of two boundary conditions commonly used to approximate shear stress distributions in tissue engineering scaffolds cultured under flow perfusion.
    Kadri OE; Williams C; Sikavitsas V; Voronov RS
    Int J Numer Method Biomed Eng; 2018 Nov; 34(11):e3132. PubMed ID: 30047248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A dynamical study of the mechanical stimuli and tissue differentiation within a CaP scaffold based on micro-CT finite element models.
    Sandino C; Lacroix D
    Biomech Model Mechanobiol; 2011 Jul; 10(4):565-76. PubMed ID: 20865437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.