These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 29278415)

  • 21. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium.
    Abdelaal AS; Jawed K; Yazdani SS
    J Ind Microbiol Biotechnol; 2019 Jul; 46(7):965-975. PubMed ID: 30982114
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli.
    Heo MJ; Jung HM; Um J; Lee SW; Oh MK
    ACS Synth Biol; 2017 Feb; 6(2):182-189. PubMed ID: 27700055
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production.
    Yang L; Wang C; Zhou J; Kim SW
    Microb Cell Fact; 2016 Jan; 15():14. PubMed ID: 26785630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases.
    Ma SM; Garcia DE; Redding-Johanson AM; Friedland GD; Chan R; Batth TS; Haliburton JR; Chivian D; Keasling JD; Petzold CJ; Lee TS; Chhabra SR
    Metab Eng; 2011 Sep; 13(5):588-97. PubMed ID: 21810477
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The potential of the mevalonate pathway for enhanced isoprenoid production.
    Liao P; Hemmerlin A; Bach TJ; Chye ML
    Biotechnol Adv; 2016; 34(5):697-713. PubMed ID: 26995109
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chromosome engineering of Escherichia coli for constitutive production of salvianic acid A.
    Zhou L; Ding Q; Jiang GZ; Liu ZN; Wang HY; Zhao GR
    Microb Cell Fact; 2017 May; 16(1):84. PubMed ID: 28511681
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Engineering MEP pathway in Escherichia coli for amorphadiene production and optimizing the bioprocess through glucose feeding control].
    Wang J; Xiong Z; Zhang S; Wang Y
    Sheng Wu Gong Cheng Xue Bao; 2014 Jan; 30(1):64-75. PubMed ID: 24818480
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-Yielding Terpene-Based Biofuel Production in
    Zhang Y; Song X; Lai Y; Mo Q; Yuan J
    ACS Synth Biol; 2021 Jun; 10(6):1545-1552. PubMed ID: 34101430
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosynthesis of β-carotene in engineered E. coli using the MEP and MVA pathways.
    Yang J; Guo L
    Microb Cell Fact; 2014 Nov; 13():160. PubMed ID: 25403509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-modular engineering for renewable production of isoprene via mevalonate pathway in Escherichia coli.
    Liu CL; Dong HG; Zhan J; Liu X; Yang Y
    J Appl Microbiol; 2019 Apr; 126(4):1128-1139. PubMed ID: 30656788
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homology-dependent recombination of large synthetic pathways into E. coli genome via λ-Red and CRISPR/Cas9 dependent selection methodology.
    Su B; Song D; Zhu H
    Microb Cell Fact; 2020 May; 19(1):108. PubMed ID: 32448328
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.
    Pitera DJ; Paddon CJ; Newman JD; Keasling JD
    Metab Eng; 2007 Mar; 9(2):193-207. PubMed ID: 17239639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply.
    Satowa D; Fujiwara R; Uchio S; Nakano M; Otomo C; Hirata Y; Matsumoto T; Noda S; Tanaka T; Kondo A
    Biotechnol Bioeng; 2020 Jul; 117(7):2153-2164. PubMed ID: 32255505
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of biodiesel by-product as substrate for high-production of β-farnesene via relatively balanced mevalonate pathway in Escherichia coli.
    You S; Yin Q; Zhang J; Zhang C; Qi W; Gao L; Tao Z; Su R; He Z
    Bioresour Technol; 2017 Nov; 243():228-236. PubMed ID: 28672185
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Systematic Optimization of Limonene Production in Engineered Escherichia coli.
    Wu J; Cheng S; Cao J; Qiao J; Zhao GR
    J Agric Food Chem; 2019 Jun; 67(25):7087-7097. PubMed ID: 31199132
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineering an isoprenoid pathway in Escherichia coli for production of 2-methyl-3-buten-2-ol: a potential biofuel.
    Gupta D; Summers ML; Basu C
    Mol Biotechnol; 2014 Jun; 56(6):516-23. PubMed ID: 24271564
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli.
    Kim EM; Woo HM; Tian T; Yilmaz S; Javidpour P; Keasling JD; Lee TS
    Metab Eng; 2017 Nov; 44():325-336. PubMed ID: 29129823
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A programmable CRISPR/Cas9-based phage defense system for Escherichia coli BL21(DE3).
    Liu L; Zhao D; Ye L; Zhan T; Xiong B; Hu M; Bi C; Zhang X
    Microb Cell Fact; 2020 Jul; 19(1):136. PubMed ID: 32620105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Pseudomonas putida for isoprenoid production by manipulating endogenous and shunt pathways supplying precursors.
    Hernandez-Arranz S; Perez-Gil J; Marshall-Sabey D; Rodriguez-Concepcion M
    Microb Cell Fact; 2019 Sep; 18(1):152. PubMed ID: 31500633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.