BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 29278485)

  • 41. Effect of the chloride ion as a hole scavenger on the photocatalytic conversion of CO2 in an aqueous solution over Ni-Al layered double hydroxides.
    Iguchi S; Teramura K; Hosokawa S; Tanaka T
    Phys Chem Chem Phys; 2015 Jul; 17(27):17995-8003. PubMed ID: 26096980
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Room-temperature synthesis of Zn(0.80)Cd(0.20)S solid solution with a high visible-light photocatalytic activity for hydrogen evolution.
    Wang DH; Wang L; Xu AW
    Nanoscale; 2012 Mar; 4(6):2046-53. PubMed ID: 22327298
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Stable Heterometallic Cluster-Based Organic Framework Catalysts for Artificial Photosynthesis.
    Dong LZ; Zhang L; Liu J; Huang Q; Lu M; Ji WX; Lan YQ
    Angew Chem Int Ed Engl; 2020 Feb; 59(7):2659-2663. PubMed ID: 31797510
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Roles of cocatalysts in semiconductor-based photocatalytic hydrogen production.
    Yang J; Yan H; Zong X; Wen F; Liu M; Li C
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110430. PubMed ID: 23816907
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MoS2/reduced graphene oxide hybrid with CdS nanoparticles as a visible light-driven photocatalyst for the reduction of 4-nitrophenol.
    Peng WC; Chen Y; Li XY
    J Hazard Mater; 2016 May; 309():173-9. PubMed ID: 26894290
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Twin defects engineered Pd cocatalyst on C
    Lang Q; Hu W; Zhou P; Huang T; Zhong S; Yang L; Chen J; Bai S
    Nanotechnology; 2017 Dec; 28(48):484003. PubMed ID: 28980525
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures.
    Xie S; Zhang Q; Liu G; Wang Y
    Chem Commun (Camb); 2016 Jan; 52(1):35-59. PubMed ID: 26540265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Developing an efficient NiCo
    Peng J; Xu J; Wang Z; Ding Z; Wang S
    Phys Chem Chem Phys; 2017 Oct; 19(38):25919-25926. PubMed ID: 28929150
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts.
    Kuriki R; Ishitani O; Maeda K
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6011-8. PubMed ID: 26891142
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Amide-bridged conjugated organic polymers: efficient metal-free catalysts for visible-light-driven CO
    Wen F; Zhang F; Wang Z; Yu X; Ji G; Li D; Tong S; Wang Y; Han B; Liu Z
    Chem Sci; 2021 Sep; 12(34):11548-11553. PubMed ID: 34667557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced photocatalytic H2 production on CdS nanorods with simple molecular bidentate cobalt complexes as cocatalysts under visible light.
    Irfan RM; Jiang D; Sun Z; Lu D; Du P
    Dalton Trans; 2016 Aug; 45(32):12897-905. PubMed ID: 27476445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Durian-Shaped CdS@ZnSe Core@Mesoporous-Shell Nanoparticles for Enhanced and Sustainable Photocatalytic Hydrogen Evolution.
    Lian Z; Sakamoto M; Kobayashi Y; Tamai N; Ma J; Sakurai T; Seki S; Nakagawa T; Lai M; Haruta M; Kurata H; Teranishi T
    J Phys Chem Lett; 2018 May; 9(9):2212-2217. PubMed ID: 29642705
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photocatalytic CO
    Kim D; Bhattacharjee S; Lam E; Casadevall C; Rodríguez-Jiménez S; Reisner E
    Small; 2024 Mar; ():e2400057. PubMed ID: 38519846
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient Electron Transfer across a ZnO-MoS
    Kumar S; Reddy NL; Kushwaha HS; Kumar A; Shankar MV; Bhattacharyya K; Halder A; Krishnan V
    ChemSusChem; 2017 Sep; 10(18):3588-3603. PubMed ID: 28703495
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stand-Alone CdS Nanocrystals for Photocatalytic CO
    Feng YX; Wang HJ; Wang JW; Zhang W; Zhang M; Lu TB
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26573-26580. PubMed ID: 34038075
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Efficient and Selective Visible-Light Driven CO
    Zhang L; Li S; Liu H; Cheng YS; Wei XW; Chai X; Yuan G
    Inorg Chem; 2020 Dec; 59(23):17464-17472. PubMed ID: 33161705
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cadmium sulfide/graphitic carbon nitride heterostructure nanowire loading with a nickel hydroxide cocatalyst for highly efficient photocatalytic hydrogen production in water under visible light.
    Yan Z; Sun Z; Liu X; Jia H; Du P
    Nanoscale; 2016 Feb; 8(8):4748-56. PubMed ID: 26862011
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multinary I-III-VI2 and I2-II-IV-VI4 Semiconductor Nanostructures for Photocatalytic Applications.
    Regulacio MD; Han MY
    Acc Chem Res; 2016 Mar; 49(3):511-9. PubMed ID: 26864703
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heterogeneous photocatalytic performances of CO
    Lin J; Li Y; Xie B
    RSC Adv; 2019 Oct; 9(61):35841-35846. PubMed ID: 35528110
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.